Math 231b Lecture 34

G. Quick

34. Lecture 34: The image of J and the Adams conjecture

34.1. The image of J. The stable real J-homomorphism is a map

$$\pi_{k-1}O \to \pi_{k-1}^s(S^0) = \pi_{k-1}S^0.$$

We are interested in the case k=4n because in those degrees the homotopy groups of O provide the most interesting image in the stable homotopy groups. We saw in the previous lectures that if $x_{4n-1}O$ is a generator then

$$e(Jx_{4n}) = \pm B_{2n}/4n$$

where B_i is the *i*th Bernoulli number. Hence the order of the image of J in $\pi_{4n-1}S^0$ is divisible by the denominator of $B_{2n}/4n$. Today we want to explore the information of the J-homomorphism a bit further.

Let us denote the denominator of $B_{2n}/4n$ by m(2n). We have a lower bound for the image of J, for the order of Im J is divisible by m(2n). So what about an upper bound? Adams showed that there is actually an upper bound and thereby determined the image of J in $\pi_{4n-1}S^0$ completely. (Well, almost completely since he could not figure out a possible factor of 2 for $4n \equiv 0 \mod 8$.) We want to follows Adams' great ideas and see how close he got to determine the image of J.

Adams proved the following result.

Theorem 34.1. The image $J(\pi_{4n-1}O)$ of the stable J-homomorphism in $\pi_{4n-1}S^0$ is cyclic of order

- (i) m(2n) if $4n \equiv 4 \mod 8$
- (ii) m(2n) or 2m(2n) if $4n \equiv 0$ modulo 8.

Remark 34.2. Mahowald showed later that the factor 2 in (ii) is not there. Adams could not settle this factor since he could prove his conjecture only for the complex K-theory and not for the real K-theory of S^{4n} . Adams' conjecture was then proven independently and in full generality by Quillen-Friedlander, Quillen, Sullivan and Becker-Gottlieb. We are going to sketch a proof in the next lecture.

Before we think about a proof, let us first note a consequence of Theorem 34.1. Let $j: \text{Im } J \hookrightarrow \pi_{4n-1}S^0$ denote the inclusion. Adams shows that the image of

e in \mathbb{Q}/\mathbb{Z} is precisly the subgroup of cosets $z/m(2n), z \in \mathbb{Z}$. Hence we have a commutative diagram

By Theorem 34.1 and its improvement we know that Im J is cyclic of order m(2n). Therefore the diagram provides a direct sum splitting

$$\pi_{4n-1}S^0 \cong \operatorname{Im} J \oplus \operatorname{Ker} e.$$

Example 34.3. For r = 4n - 1 let us take the generator in $\pi_r SO$ and let its image under $J: \pi_r SO \to \pi_r S^0$ be j_r . Then we have:

$$e(j_3) = 1/24, \ e(j_7) = -1/240, \ e(j_{11}) = 1/504, \ e(j_{15}) = -1/480, \ e(j_{19}) = 1/264.$$

For r = 3, 7, 11, we have

$$\pi_3 S^0 \cong \mathbb{Z}/24, \ \pi_7 S^0 \cong \mathbb{Z}/240, \ \pi_{11} S^0 \cong \mathbb{Z}/504.$$

Or in other words, the kernel of e is trivial in these cases. But for r = 15, 19, the kernel of e is $\mathbb{Z}/2$.

Remark 34.4. Since the numbers m(2n) are unbounded we see that, even though the stable homotopy groups $\pi_r S^0$ are of finite, arbitrarily large orders can occur.

34.2. Adams' upper bound for Im J. We know that Im J is divisible by m(2n). To prove Theorem 34.1 we need an argument in the opposite direction.

Let Y be an abelian group with Adams operations, i.e., an abelian group with endomorphisms ψ^k for every $k \in \mathbb{Z}$. A map between such groups is a homomorphism of abelian groups which is compatible with the operations.

Let e be a function that assigns to each pair $k \in \mathbb{Z}$, $y \in Y$ a non-negative integer e(k,y). Then we define Y_e to be the subgroup of Y generated by the elements

$$k^{e(k,y)}(\psi^k - 1)y.$$

It is clear that if

$$e_1 \geq e_2$$
, then $Y_{e_1} \subseteq Y_{e_2}$.

Hence we can define

$$J''(X) := Y/\cap_e Y_e$$

where the intersection runs over all functions e.

Remark 34.5. If Y is finitely generated, it is easy to see that it suffices to let e run over the functions f which are independent of y and get the same quotient group J''(X). For it is clear that

$$\cap_e Y_e \subseteq \cap_f Y_f$$
.

For $y \in Y$, let y_1, \ldots, y_n generate y. For any function e(k, y) define the corresponding function f(k) by

$$f(k) := \operatorname{Max}_{1 \le r \le n} e(k, y_r).$$

It is clear that we have $Y_f \subseteq Y_e$ and hence

$$\cap_f Y_f \subset \cap_e Y_e$$
.

Moreover, if Y_1 and Y_2 are finitely generated, then we have

$$(Y_1 \oplus Y_2)_f = (Y_1)_f \oplus (Y_2)_f$$

and hence

$$\cap_f (Y_1 \oplus Y_2)_f = \cap_f (Y_1)_f \oplus \cap_f (Y_2)_f.$$

As a consequence we get

$$J''(Y_1 \oplus Y_2) = J''(Y_1) \oplus J''(Y_2).$$

For Y = K(X) we set J''(X) := J''(K(X)) and for Y = KO(X) we set J''(X) := J''(KO(X)). Let

$$r: K(X) \to KO(X)$$

be the canonical map. Since it is compatible with the Adams operations, it induces a map

$$J_{\mathbb{C}}''(X) \to J''(X).$$

Proposition 34.6. a) Let P be a point. Then

$$J''(P) = \mathbb{Z}.$$

b) If X is a finite cell complex, then

$$J''(X) = \mathbb{Z} + \tilde{J}''(X)$$
 with $\tilde{J}''(X) = J''(\tilde{KO}(X))$.

Proof. a) We know $KO(P) = \mathbb{Z}$ and the operations are just given by $(\psi^k - 1)y = 0$ for all k and y.

b) We just need to apply part a) and the second part of the above remark. \Box

Here is the reason why we are interested in the groups J''(Y) for real K-theory. Adams made the following important conjecture. The formulation of the conjecture and its proof require to give a different interpretation of J(X) in terms of spherical fibrations. Since we will need some time to think about these fibrations in more detail, we postpone this interpretation for a moment.

Nevertheless we formulate the conjecture in its general form and think for now of the special case $X = S^m$.

The Adams conjecture 34.7. If k is an integer, X a finite cell complex and $y \in KO(X)$, then there exists a non-negative integer e = e(k) such that

$$J(k^e(\psi^k - 1)y) = 0.$$

The consequence of the conjecture for our discussion is the following:

Proposition 34.8. Suppose for S^{4n} Conjecture 34.7 holds for all k and y. Then $\tilde{J}''(S^{4n})$ is an upper bound for $\operatorname{Im} J$ in the sense that the surjective map $J \colon KO(S^{4n}) \to \operatorname{Im} J$ factors through an epimorphism $\tilde{J}''(S^{4n}) \to \operatorname{Im} J$.

Example 34.9. Take X to be the sphere S^{4n} . We claim that the group $\tilde{J}''(S^{4n})$ is cyclic of order m(2n). If $y \in \tilde{KO}(S^{4n})$, we have

$$k^{f(k)}(\psi^k - 1)y = k^{f(k)}(k^{2n} - 1)y$$

since ψ^k acts on the K-theory of S^{4n} by multiplication by k^{2n} . (We proved this only for complex K-theory, but the same argument shows it for real K-theory too.) Thus the subgroup Y_f of $\tilde{KO}(S^{4n}) = \mathbb{Z}$ consists of the multiples of h(f,2n) where h(f,2n) is the greatest common divisor of the integers

$$k^{f(k)}(k^{2n}-1)$$
, for all $k \in \mathbb{Z}$.

But this number is exactly m(2n). Hence $\tilde{J}''(S^{4n}) = \tilde{KO}(S^{4n})/Y_f = \mathbb{Z}/m(2n)$.

34.3. Adams' proof of Theorem 34.1. Adams proved Conjecture 34.7 for the real K-theory of a sphere S^{2n} under the assumption that the map

$$r \colon \tilde{K}(S^{2n}) \to \tilde{KO}(S^{2n})$$

is an epimorphism.

For $4n \equiv 4 \mod 8$, the map

$$r \colon \tilde{K}(S^{4n}) \to \tilde{KO}(S^{4n})$$

is an epimorphism. Hence by Proposition 34.8 $\tilde{J}_{\mathbb{R}}''(S^{4n})$ is an upper bound for Im J. By Example 34.9 this implies that $\tilde{J}_{\mathbb{R}}(S^{4n})$ divides m(2n).

For $4n \equiv 0$ modulo 8 the proof would be the same except that in this case image of the map

$$r \colon \tilde{K}(S^{4n}) \to \tilde{KO}(S^{4n})$$

consists of the elements divisible by 2. For this case Adams could not prove his conjecture for S^{4n} and hence he could not settle the factor 2. We will investigate this further in the next lecture.