
Math 231b
Lecture 34

G. Quick

34. Lecture 34: The image of J and the Adams conjecture

34.1. The image of J. The stable real J-homomorphism is a map

πk−1O → πs
k−1(S

0) = πk−1S
0.

We are interested in the case k = 4n because in those degrees the homotopy
groups of O provide the most interesting image in the stable homotopy groups.
We saw in the previous lectures that if x4n−1O is a generator then

e(Jx4n) = ±B2n/4n

where Bi is the ith Bernoulli number. Hence the order of the image of J in
π4n−1S

0 is divisible by the denominator of B2n/4n. Today we want to explore the
information of the J-homomorphism a bit further.

Let us denote the denominator of B2n/4n by m(2n). We have a lower bound
for the image of J , for the order of Im J is divisible by m(2n). So what about an
upper bound? Adams showed that there is actually an upper bound and thereby
determined the image of J in π4n−1S

0 completely. (Well, almost completely since
he could not figure out a possible factor of 2 for 4n ≡ 0 mod 8.) We want to
follows Adams’ great ideas and see how close he got to determine the image of J .

Adams proved the following result.

Theorem 34.1. The image J(π4n−1O) of the stable J-homomorphism in π4n−1S
0

is cyclic of order

(i) m(2n) if 4n ≡ 4 modulo 8
(ii) m(2n) or 2m(2n) if 4n ≡ 0 modulo 8.

Remark 34.2. Mahowald showed later that the factor 2 in (ii) is not there.
Adams could not settle this factor since he could prove his conjecture only for the
complex K-theory and not for the real K-theory of S4n. Adams’ conjecture was
then proven independently and in full generality by Quillen-Friedlander, Quillen,
Sullivan and Becker-Gottlieb. We are going to sketch a proof in the next lecture.

Before we think about a proof, let us first note a consequence of Theorem 34.1.
Let j : Im J ↪→ π4n−1S

0 denote the inclusion. Adams shows that the image of
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e in Q/Z is precisly the subgroup of cosets z/m(2n), z ∈ Z. Hence we have a
commutative diagram

π4n−1S
0

e

&&
Im J

j
::

e◦j // Z/m(2n).

By Theorem 34.1 and its improvement we know that Im J is cyclic of order m(2n).
Therefore the diagram provides a direct sum splitting

π4n−1S
0 ∼= Im J ⊕Ker e.

Example 34.3. For r = 4n − 1 let us take the generator in πrSO and let its
image under J : πrSO → πrS

0 be jr. Then we have:

e(j3) = 1/24, e(j7) = −1/240, e(j11) = 1/504, e(j15) = −1/480, e(j19) = 1/264.

For r = 3, 7, 11, we have

π3S
0 ∼= Z/24, π7S

0 ∼= Z/240, π11S
0 ∼= Z/504.

Or in other words, the kernel of e is trivial in these cases. But for r = 15, 19, the
kernel of e is Z/2.

Remark 34.4. Since the numbers m(2n) are unbounded we see that, even though
the stable homotopy groups πrS

0 are of finite, arbitrarily large orders can occur.

34.2. Adams’ upper bound for Im J. We know that Im J is divisible bym(2n).
To prove Theorem 34.1 we need an argument in the opposite direction.

Let Y be an abelian group with Adams operations, i.e., an abelian group
with endomorphisms ψk for every k ∈ Z. A map between such groups is a
homomorphism of abelian groups which is compatible with the operations.

Let e be a function that assigns to each pair k ∈ Z, y ∈ Y a non-negative
integer e(k, y). Then we define Ye to be the subgroup of Y generated by the
elements

ke(k,y)(ψk − 1)y.

It is clear that if

e1 ≥ e2, then Ye1 ⊆ Ye2 .

Hence we can define

J ′′(X) := Y/ ∩e Ye
where the intersection runs over all functions e.
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Remark 34.5. If Y is finitely generated, it is easy to see that it suffices to let e
run over the functions f which are independent of y and get the same quotient
group J ′′(X). For it is clear that

∩eYe ⊆ ∩fYf .
For y ∈ Y , let y1, . . . , yn generate y. For any function e(k, y) define the corre-
sponding function f(k) by

f(k) := Max1≤r≤ne(k, yr).

It is clear that we have Yf ⊆ Ye and hence

∩fYf ⊆ ∩eYe.
Moreover, if Y1 and Y2 are finitely generated, then we have

(Y1 ⊕ Y2)f = (Y1)f ⊕ (Y2)f

and hence
∩f (Y1 ⊕ Y2)f = ∩f (Y1)f ⊕ ∩f (Y2)f .

As a consequence we get

J ′′(Y1 ⊕ Y2) = J ′′(Y1)⊕ J ′′(Y2).

For Y = K(X) we set J ′′C(X) := J ′′(K(X)) and for Y = KO(X) we set
J ′′(X) := J ′′(KO(X)). Let

r : K(X)→ KO(X)

be the canonical map. Since it is compatible with the Adams operations, it
induces a map

J ′′C(X)→ J ′′(X).

Proposition 34.6. a) Let P be a point. Then

J ′′(P ) = Z.
b) If X is a finite cell complex, then

J ′′(X) = Z + J̃ ′′(X) with J̃ ′′(X) = J ′′(K̃O(X)).

Proof. a) We know KO(P ) = Z and the operations are just given by (ψk−1)y = 0
for all k and y.
b) We just need to apply part a) and the second part of the above remark. �

Here is the reason why we are interested in the groups J ′′(Y ) for real K-
theory. Adams made the following important conjecture. The formulation of
the conjecture and its proof require to give a different interpretation of J(X)
in terms of spherical fibrations. Since we will need some time to think about
these fibrations in more detail, we postpone this interpretation for a moment.
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Nevertheless we formulate the conjecture in its general form and think for now
of the special case X = Sm.

The Adams conjecture 34.7. If k is an integer, X a finite cell complex and
y ∈ KO(X), then there exists a non-negative integer e = e(k) such that

J(ke(ψk − 1)y) = 0.

The consequence of the conjecture for our discussion is the following.

Proposition 34.8. Suppose for S4n Conjecture 34.7 holds for all k and y. Then
J̃ ′′(S4n) is an upper bound for Im J in the sense that the surjective map J : KO(S4n)→
Im J factors through an epimorphism J̃ ′′(S4n)→ Im J .

Example 34.9. Take X to be the sphere S4n. We claim that the group J̃ ′′(S4n)
is cyclic of order m(2n). If y ∈ K̃O(S4n), we have

kf(k)(ψk − 1)y = kf(k)(k2n − 1)y

since ψk acts on the K-theory of S4n by multiplication by k2n. (We proved this
only for complex K-theory, but the same argument shows it for real K-theory
too.) Thus the subgroup Yf of K̃O(S4n) = Z consists of the multiples of h(f, 2n)
where h(f, 2n) is the greatest common divisor of the integers

kf(k)(k2n − 1), for all k ∈ Z.
But this number is exactly m(2n). Hence J̃ ′′(S4n) = K̃O(S4n)/Yf = Z/m(2n).

34.3. Adams’ proof of Theorem 34.1. Adams proved Conjecture 34.7 for the
real K-theory of a sphere S2n under the assumption that the map

r : K̃(S2n)→ K̃O(S2n)

is an epimorphism.

For 4n ≡ 4 modulo 8, the map

r : K̃(S4n)→ K̃O(S4n)

is an epimorphism. Hence by Proposition 34.8 J̃ ′′R(S4n) is an upper bound for

Im J . By Example 34.9 this implies that J̃R(S4n) divides m(2n).

For 4n ≡ 0 modulo 8 the proof would be the same except that in this case
image of the map

r : K̃(S4n)→ K̃O(S4n)

consists of the elements divisible by 2. For this case Adams could not prove his
conjecture for S4n and hence he could not settle the factor 2. We will investigate
this further in the next lecture.
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