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G. Quick

35. Lecture 35: Sphere bundles and the Adams conjecture

35.1. Sphere bundles. Let X be a connected finite cell complex. We saw that
the J-homomorphism could be defined by sending an automorphism of Rn to
the induced automorphism of the one-point compactification. Today we want to
generalize this construction and study J as a construction on vector bundles as
follows.

Let E → X be an n-dimensional real vector bundle. By taking the fiberwise
one-point compactification we get an associated fiber bundle S(E) → X whose
fibers are all n-spheres Sn. We call such a bundle a sphere bundle.

We will say that a map f : S(E) → S(E ′) of bundles is a fiber homotopy
equivalence if there is a bundle map g : S(E ′) → S(E) such that f ◦ g and g ◦ f
are homotopic through bundle maps to the respective identities.

Taking the associated sphere bundle of a vector bundle respects direct sums in
the sense that

S(E ⊕ E ′) ∼= S(E) ∧X S(E ′)

where ∧X denotes the fiberwise smash product.

Definition 35.1. We denote by SF(X) the Grothendieck group of pointed sphere
bundles over X modulo fiber homotopy equivalence. The group law is given by
the fiberwise smash product.

Remark 35.2. A fiber bundle whose fibers who are all of the homotopy type of a
sphere is called a pointed spherical fibration. Hence we could have defined SF(X)
also as the Gorthendieck group of (pointed) spherical fibrations.

Sending a vector bundle to its fiberwise one-point compactification defines a
homomorphism

KO(X)→ SF(X).

Example 35.3. We want to understand this map for X a sphere. A vector
bundle over X is determined by its clutching function. This can be expressed as
an isomorphism

K̃O(Sn) ∼= πn−1O.
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Similarly, a sphere bundle is determined by a clutching function

f : Sn−1 → Homeo(Sk, Sk).

Since we are only interested in sphere bundles modulo fiber homotopy equivalence,
it suffices to specify the clutching function up to homotopy equivalence. Hence a
function

f : Sn−1 → Equiv(Sk, Sk)

to the monoid of homotopy self-equivalences of Sk determines a spherical fibration
over X or a sphere bundle up to fiber homotopy equivalence . Let us denote this
topological monoid by G(k) = Equiv(Sk, Sk). If we choose k large enough, we
have an isomorphism

SF(Sn) ∼= πn−1G(k) for k � 0.

But we can say a bit more. An element of G(k) is a map Sk → Sk. Now we
observe that G(k) is a subset of maps of degree ±1

Ωk
±1S

k ⊂ ΩkSk = Map∗(S
k, Sk).

Therefore, if we subtract the identity, we get an isomorphism

πn−1G(k) ∼= πn−1+k(Sk) for k � 0.

Thus, the group SF(Sn) is equal to the (n− 1)st stable homotopy group of the
sphere

SF(Sn) ∼= πs
n−1(S

0).

Hence, for X = Sn, the map

KO(Sn)→ SF(Sn)

defined by taking fiberwise one-point compactifications is the J-homomorphism.

Motivated by this example, we will call the map

J : KO(X)→ SF(X)

the J-homomorphism for any finite cell complex X. As a consequence of the
discussion in Example 35.3 we also get the following finiteness result of Atiyah’s.

Proposition 35.4. If X is a connected finite cell complex, the group SF(X) is
finite.

Sketch of a proof. We can argue just as in Example 35.3 that every element in
SF(X) is classified by a homotopy class of a map

X → BG(k) for k � 0

where BG(k) denotes the classifying space of the monoid G(k) (such a classifying
space construction exists). Since X is a finite cell complex we can use induction
on the number of cells and are reduced to show that πnBG(k) is finite. But the
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latter group is equal to πn−1G(k) and we have seen in Example 35.3 that this
group is equal to πs

n−1(S
0). The stable homotopy groups of the sphere spectrum

are finite by Serre. �

35.2. The Adams conjecture. Adams conjectured the following property for
the J-homomorphism.

Theorem 35.5 (The Adams Conjecture). Let X be a finite cell complex, k an
integer, and y ∈ KO(X). Then there exists a non-negative integer e = e(k, y)
such that

ke(ψk − 1)y ∈ Ker J.

Moreover, these elements (for all k) generate the kernel of J .

Remark 35.6. We could reformulate the assertion of the theorem as follows. For
every prime p not dividing k the kernel of the map

KO(X)(p) → SF(X)(p)

is generated by elements of the form (ψk − 1)y.

Before we go on, let us see how the following result of Adams’, used in the
previous lecture for X = S4n, follows from the first part of Theorem 35.5. (We
use the notation of the previous lecture.)

Proposition 35.7. The group J ′′(X) is an upper bound for the image of J in
SF(X).

Proof. Let T (X) be the kernel of J and Y = KO(X). By Theorem 35.5 there is
a function e(k, y) such that Ye ⊆ T (X), where Ye is the subgroup of Y generated
by all elements of the form ke(ψk − 1)y. This shows that the intersection ∩eYe is
contained in T (X). But J ′′(X) is by definition the quotient

J ′′(X) = Y/ ∩e Ye.
So we have a surjective map KO(X)/ ∩e Ye → KO(X)/T (X). In particular,
every element in the image of J is also in the image of the induced map J ′′(X)→
SF (X). �

35.3. Line bundles and the mod k Dold theorem. We will sketch a proof of
Adams’ conjecture in the next lecture. Today we study some special cases. We
begin with an easy observation.

Remark 35.8. If the first assertion of Theorem 35.5 holds for all vector bundles
of even rank, then it holds for all vector bundles. For, if ξ is a bundle of odd
rank, then by assumption there is an N such that

kN(ψk − 1)(ξ ⊕ ε1) ∈ Ker J,
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and hence

kN(ψk − 1)ξ = kN(ψk(ξ)− ξ) + kN(ε1 − ε1) = kN(ψk(ξ ⊕ ε1)− (ξ ⊕ ε1)) ∈ Ker J.

Proposition 35.9. Let y ∈ KO(X) be a linear combination of real line bundles
over the finite cell complex X. Then there exists an e ∈ N (depending only on
the dimension of X) such that

ke(ψk − 1)y = 0.

Proof. Since ke(ψk − 1)y is linear in y, it suffices to consider the case in which y
is a real line bundle. In this case, since X is a finite cell complex, there exists a
map f : X → RPn for some n such that y = f ∗γ, where γ is the canonical real
line bundle over RPn. Hence it suffices to prove the assertion for y = γ.

The KO(RPn) is a finite 2-group generated by 1−γ. (If you know about spec-
tral sequences, you can deduce this easily from the Atiyah-Hirzebruch spectral
sequence and the fact that the cohomology of RPn is a finite 2-group.) Hence
there is an e ∈ N such that

2e(ψk − 1)y = 0.

If k is even, this implies ke(ψk − 1)y = 0. If k is odd, then we have the relation
y2 = 1 in KO(RPn). This implies ψk(y) = yk = y and hence (ψk − 1)y = 0.
To see that we have y2 = 1 there are many different ways. For example, one
could use the fact that real line bundles are characterized by their first Stiefel-
Whitney class. Or one notices that the structure group of a real line bundle is
O(1) = {+1,−1} from which one sees γ ⊗ γ = 1. �

The proof of Theorem 35.5 uses the following generalization of Dold’s results.

Theorem 35.10 (mod k Dold theorem). Let X be a finite cell complex. Suppose
there a map of sphere bundles ξ1 → ξ2 of the same dimension such that the map

on fibers Sn k−→ Sn is of degree k. Then there exists a non-negative integer e such
that keξ1 and keξ2 are fibre homotopy equivalent and hence keξ1 = keξ2 ∈ SF(X).

Example 35.11. Let L be a complex line bundle, or equivalently an oriented
2-dimensional real vector bundle. Then the map

X → CP∞
k−→ CP∞

classifies L⊗k. The map CP∞
k−→ CP∞ is covered by a map of universal bundles

which is fiberwise the degree k map. For sending L to L⊗k corresponds in each
fiber to the map z 7→ zk. Then the mod k Dold theorem implies that there is an e
such that keψk(L) = keL⊗k and keL are fiber homotopy equivalent. Alternatively,
we could say that ψk(L)− L = 0 ∈ SF(X)[k−1].
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35.4. Sketch of Adams’ proof for X = S4n, 4n ≡ 4 mod 8. Let X = S2n

such that the map
r : K(S2n)→ KO(S2n)

is surjective. So given y ∈ KO(S2n) there is a z ∈ K(S2n) such that y = r(z).
Now consider the map

q : W = S2 × · · · × S2 → S2 ∧ · · · ∧ S2 → S2n

Over W every vector bundle is a linear combination of complex line bundles
(think of S2 as CP1). In particular, q∗z is such a linear combination. Therefore

q∗y = r(q∗z)

is a linear combination of oriented 2-dimensional real vector bundles. By Example
35.11 we know that there is an e such that

ke(ψk − 1)q∗y = q∗(ke(ψk − 1)y)

maps to zero in SF(W ). Finally, Adams shows that the map

q∗ : SF(S2n)→ SF(W )

is a monomorphism. (This requires only some knowledge about the classifying
space BG(k) and mapping cones.)

Adams also proved the case that y ∈ KO(X) is a linear combination of O(1)-
and O(2)-bunldes. The general case was later proved independently and by very
different methods by Quillen-Friedlander, Quillen, Sullivan, and Becker Gottlieb.
We will sketch a proof in the next lecture.
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