
Math 231b
Lecture 36

G. Quick

36. Lecture 36: Sullivan’s proof of the Adams conjecture

Today we will have a look at Sullivan’s beautiful ideas on Galois symmetries
in topology and his proof of the Adams conjecture in the complex case. We will
omit a lot of details and just outline the ideas. We encourage everyone to read
Sullivan’s original paper and lecture notes.

36.1. The Adams conjecture. Let X be a connected finite cell complex. We
defined SF(X) as the Grothendieck group of sphere bundles over X modulo
fiber homotopy equivalence. Sending a vector bundle to its fiberwise one-point
compactification defines the J-homomorphism

J : KO(X)→ SF(X).

For X = Sn a sphere we showed that there is a natural isomorphism

SF(Sn) ∼= πsn−1(S
0)

with the stable homotopy group of the sphere.

Our goal is to show the following result.

Theorem 36.1 (The Adams Conjecture). Let X be a finite cell complex, k an
integer, and y ∈ KO(X). Then there exists a non-negative integer e = e(k, y)
such that

ke(ψk − 1)y ∈ Ker J.

Last time we defined the monoid G(n) = Equiv(Sn, Sn) of self-homotopy equiv-
alences of Sn. Taking smash product with a circle defines a map G(n)→ G(n+1).
Moreover, since a linear self-transformation of Rk extends via one-point com-
pactification to a self-homotopy equivalence of Sn, we have a canonical map
O(n)→ G(n). Since we study only the complex case today (though the real case
follows from an analogous argument), we compose this map with U(n)→ O(2n)
and get a map

U(n)→ G(2n).

This map induces a map of corresponding classifying spaces

BU(n)→ BG(2n).
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We denote the colimit of the BG(n) over n by BG:

BG := colim
n→∞

BG(n).

Overall, we obtain a commutative diagram

(1) BU(n)

��

// BG(2n)

��
BU // BG.

The space BG is the classifying space of (stable) spherical fibration (sphere
bundles up to fiber homotopy equivalence). Hence the set of spherical fibrations
over X is in bijection to the set of homotopy classes of maps

[X,BG].

Now the (complex) J-homomorphism K(X)→ SF(X) corresponds to a map

[X,BU ]→ [X,BG]

which is induced by the above map of classifying spaces which we also denote by

J : BU → BG.

Furthermore, the kth Adams operation corresponds to a map of classifying spaces

ψk : BU → BU.

Now given an n-dimensional complex vector bundle E over X, its associated
sphere bundle corresponds to a map

X
E−→ BU(n)

i−→ BU
J−→ BG

where i is the inclusion. If we apply the kth Adams operation we get a corre-
sponding map

X
E−→ BU(n)

ψk

−→ BU
J−→ BG.

Hence to prove the Adams conjecture we need to show that up to multiplication
by some power ke the map

(2) BU(n)
ψk−i−−−→ BU

J−→ BG

is null-homotopic, that is homotopic to a constant map.

Let us dream about a strategy for the proof for a moment. The homotopy class
of the map

J ◦ i : BU(n)→ BG
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classifies a sphere bundle up to fiber homotopy. This bundle is the sphere bundle
associated to the canonical bundle γn over BU(n). Now it turns out that this
bundle is fiber homotopy equivalent to the fibration

BU(n− 1)→ BU(n).

Hence we can also think of BU(n−1) as the total space of the spherical fibration
J(γn).

Then if we had a (homotopy) pullback diagram of the form

(3) BU(n− 1)

i
��

ψk

// BU(n− 1)

i
��

BU(n)
ψk

// BU(n)

with self-homotopy equivalences ψk then we would be done. For, the diagram
would show that

• the spherical fibration over BU(n) classified by J ◦ ψk is the pullback of

i : BU(n− 1)→ BU(n) along ψk : BU(n)→ BU(n);

• and hence, since the maps ψk are equivalences, the sphere bundles corre-
sponding to J ◦ i and J ◦ ψk are fiber homotopy equivalent.

Unfortunately, the Adams operations ψk are self-homotopy equivalences of BU
and there is no way to produce them as operations on BU(n) (at least not com-
patibly for all n and with all properties).

This is a bummer. But here comes Sullivan’s great idea. Even though the

ψk do not exist on the BU(n), they exist on the profinite completion ˆBU(n).
Moreover, they fit into a beautiful picture of Galois symmetries in topology. Let
us have a look at how this works.

36.2. Galois symmetries. The crucial observation is that the homotopy groups
of BG are finite (remember they are isomorphic to the stable homotopy groups of
the sphere spectrum). This implies that the map J : BU → BG factors through
the profinite completion of BU

B̂U
Ĵ

""
BU

<<

J // BG.
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The space B̂U is the profinite completion of BU , i.e., it is a space endowed with
a map BU → B̂U which induces the profinite completion on homotopy groups

π∗BU → π∗B̂U = (π∗BU)∧,

which, in even degrees, is just the completion of the integers Z→ Ẑ.

We call
K̂(X) = [X, B̂U ]

the profinite K-theory of X.

Remark 36.2. Such a space B̂U exists and Sullivan establishes a lot of interesting
results about profinite homotopy. We will skip to explain how you obtain B̂U and
omit the technical subtleties, since there is more interesting theory to explore.
Another source for profinite completion in homotopy theory is the work of Artin-
Mazur.

Now Sullivan shows that the map from stable fiber homotopy types to profi-
nite stable homotopy types is injective. Hence it suffices to show that, up to
multiplication by some power ke, the induced composite map

(4) ˆBU(n)
ψk−i−−−→ B̂U

Ĵ−→ BG

is null-homotopic. In fact, since we are only interested in showing that the map
is null-homotopic after localizing at p, (p, k) = 1, it suffices to consider pro-p-

completions. So we consider B̂U as the p-completed space if necessary, even
though we will omit the p in the notation. (The smarter way to handle this is to
redefine the ψk on the profinite completion as the identity if p divides k.)

Next comes a really cool move of Sullivan’s. Using algebraic geometry, in
particular étale homotopy theory, he interprets the Adams operations on the
profinite completion of BU as elements in the absolute Galois group of Q and

shows that there are unstable operations ψk on each ˆBU(n). This is all the
more remarkable, since the ψk do not exist as operations BU(n)→ BU(n) (if we
require all the nice properties they have as self-maps of BU).

Here is the idea. We can write the complex Grassmannian Grn(Cn+k) as a
quotient

(5) Grn(Cn+k) ∼= GL(n+ k,C)/(GL(n,C)×GL(k,C)).

So we may consider the Grassmannian as an affine smooth complex algebraic
variety (for the real Grassmannian replace GL(−,C) with O(−,C)).

Now there is a purely algebraic way to assign to every algebraic variety V over
any base field a homotopy type represented by a CW-complex. The machinery
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which does this is called étale homotopy theory and has been developed by Artin-
Mazur and Friedlander. The idea is similar to computing cohomology via Čech
coverings. If X is a nice topological space we can compute its cohomology by
taking an open covering U → X and form the Čech nerve. If the covering is
nice, i.e., if each intersection of open sets is contractible, then the cohomology of
the Čech nerve is equal to the cohomology of X. Not every space admits nice
coverings, but if we take the limit over all coverings, i.e., the colimit over all
cohomology groups of the corresponding Čech nerves, then we still recover the
cohomology of X.

Now we transport this idea to algebraic geometry. Unfortunately, there are not
enough open coverings of a variety V in its intrinsic topology, the Zariski topology.
But Grothendieck showed that we do not actually need a topology in the usual
sense to compute cohomology, it suffices to consider maps U → X of a certain
types (instead of taking open subsets). The correct generalization of an open
subset in our case is the notion of an étale map. An étale map between (smooth)
algebraic varieties is the analogue of a local diffeomorphism between manifolds.
You should think about what that means or read about it. There is actually a
criterion using Jacobian determinants which makes the analogy obvious.

So we can speak of an étale open covering by taking an étale surjective map
U → V . Now we can apply the Čech construction and form a simplicial variety
U· whose nth term is the (n+ 1)-fold fiber product

U ×X U ×X · · · ×X U
of U over X. Applying the connected component functor to U· in each degree
yields a simplicial set π0(U·). Taking its geometric realization gives us a CW-
complex. If V is a finite-dimensional smooth variety, then this is actually a finite
cell complex.

As in topology taking just one such covering is not enough to describe the
homotopy type of V . But if we make the coverings finer and finer and consider
the colimit over all of them (actually the cofiltering system of all such coverings),
then we get the correct profinite homotopy type.

Remark 36.3. Using étale Čech coverings is actually sufficient for smooth quasi-
projective varieties over a field. For more general schemes one has to consider
hypercoverings. But that’s a different story.

So let us focus on our case. What we learn from this story is that there is a
purely algebraic construction of the profinite homotopy type of the Grassmannian
manifold and we can write

(6) Ĝrn(Cn+k) ' lim
α
Nα
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where the Nα run through these algebraic étale coverings space (actually the
associated finite cell complexes).

Now we come to the crucial point. The equations defining the Grassmannian
in (5) actually have rational (in fact integer) coefficients. So we can consider the
Grassmannian as a variety defined over Q. Hence each automorphism σ of C
fixing Q acts on the (complex) points of the Grassmannian. This is nice, though
there is the problem: the action of σ is “highly discontinuous”, at least in the
sense that it does not induce an interesting automorphism on cohomology.

That’s bad news. But here is the solution: Each variety Nα in (6) is defined
over Q and the Galois group Gal(C/Q) acts on the system of the Nα’s. After
taking the union over all k, this defines an action of Gal(C/Q) on the profinite

classifying space ˆBU(n) (and on B̂U).

Now consider the natural surjective homomorphism

χ : Gal(C/Q)→ Ẑ∗p
obtained by letting σ ∈ Gal(C/Q) act on the roots of unity. (This is also called
the cyclotomic character.)

Example 36.4. One can check that Gal(C/Q) acts on ˆBU(1) = ĈP
∞

= K(Ẑp, 2)

via χ and the natural action of Ẑ∗p on K(Ẑp, 2). (You should do this yourself after
reading more about étale coverings, but you could also look it up in Sullivan’s
MIT notes §5.)

From this example it follows by naturality and the splitting principle that

Gal(C/Q) acts through Ẑ∗p and χ on ˆBU(n). That means that σ acts on coho-
mology via

σ(ci) = χ(σ)−1ci
where ci is the ith Chern class (which is a generator of the cohomology of BU(n)).

Proposition 36.5. Given k in Ẑ∗p , choose a σ ∈ Gal(C/Q) such that χ(σ) = k−1.
Then

σ : ˆBU(n)→ ˆBU(n)

is an unstable Adams operation in the sense that the diagram

ˆBU(n)

σ
��

// B̂U

ψ̂k

��
ˆBU(n) // B̂U

is commutative up to homotopy. Moreover, the operations σ are compatible if n
varies.
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Sketch of the proof. To show that the diagram is homotopy commutative amounts
to show that the elements in profinitely completed K-theory corresponding to the
horizontal maps agree. For this it suffices to show by the splitting principle that
the diagram

ˆBU(1)

σ
��

// B̂U

ψ̂k

��
ˆBU(1) // B̂U

is commutative up to homotopy. But we know from the above example that σ
raises elements to the kth power and this is what ψk does on line bundles. �

Remark 36.6. The fact that we can define Adams operations on the profinite

completion ˆBU(n) is very remarkable, since there are no unstable Adams opera-
tions on BU(n) itself. The key is the natural Galois action on the inverse system
of étale coverings.

So Sullivan concludes that we can reformulate the Adams conjecture in the
following way.

Theorem 36.7. The stable fiber homotopy type of elements in profinite K-theory
is constant on the orbits of the Galois group.

Proof. Proposition 36.5 shows that we have a homotopy pullback diagram

(7) ˆBU(n− 1)

i
��

ψk

// ˆBU(n− 1)

i
��

ˆBU(n)
ψk

// ˆBU(n)

where the ψk are given by the Galois symmetries σ and are homotopy equiva-
lences. So for the profinite completions we can argue as we wanted that

• the completed spherical fibration over ˆBU(n) classified by Ĵ ◦ ψk is the
pullback of

i : ˆBU(n− 1)→ ˆBU(n) along ψk = σ : ˆBU(n)→ ˆBU(n);

• and hence, since the maps ψk = σ are equivalences, the completed sphere
bundles corresponding to Ĵ ◦ i and Ĵ ◦ ψk are fiber homotopy equivalent.

This shows that the sphere bundles associated to γ̂n and ψk(γ̂n) = γ̂σn have the
same unstable profinite homotopy types. But this implies that also the stable
sphere bundles associated to γ̂ and ψk(γ̂) = γ̂σ have the same stable profinite
homotopy types. �
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Remark 36.8. 1. This completes the proof of the Adams conjecture in the
complex case. The argument for the real case is similar. We just have to take
care of the extra information of the extension C/R.
2. The proof shows more than just the stable version in Theorem 36.7. It also
proves an unstable (real and complex) profinite version of the Adams conjecture.
3. It is in fact not necessary to just complete at primes p with (p, k) = 1. If one
redefines the Adams operations appropriately at the primes p dividing k one can
take profinite completions with respect to all primes at once.
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