
Math 231br
Problem Set 1

Spring 2014

You should hand in solutions to at least three problems, but please feel free to
work on as many problems as you like and to hand in all your solutions. For any
questions, please send me an email to gquick@math.harvard.edu and/or come to
my office hours on Wednesdays 1.30-2.30pm in SC 341. Solutions are due by
Friday, February 28, at the beginning of class.

Problem 1.1. Using a partition of unity, show that any real vector bundle over
a paracompact base space can be given a Euclidean metric.

Recall that a smooth tangent vector field on the unit sphere Sn ⊂ Rn+1 is a
smooth map

v : Sn → Rn+1 such that v(x) · x = 0 for all x ∈ Sn.

Problem 1.2. a) Show that the unit n-sphere Sn admits a tangent vector field
which is nowhere zero providing that n is odd.
b) If Sn admits a tangent vector field which is nowhere zero, show that the identity
map of Sn is homotopic to the antipodal map.

Recall that the degree of a self-map f : Sn → Sn is defined as follows. The map
f induces a map f∗ : πn(Sn) → πn(Sn) on homotopy groups. The group πn(Sn)
is isomorphic to Z and f∗ is given by multiplication by an integer. This integer
is called the degree of f and is denoted by d(f).
If you feel familiar enough with the notions just mentioned, please try to show
the following application of Problem 1.2.

Problem 1.3. For n ≥ 2 even, show that the antipodal map of Sn is homotopic
to the reflection

r(x1, . . . , xn+1) = (−x1, x2, . . . , xn+1)

and therefore has degree −1.
Follow from this fact and the result in Problem 1.2 that the tangent bundle of
Sn is not trivial for n even (and n ≥ 2).

Problem 1.4. Let R be the commutative ring R := R[x,y,z]/(x2 + y2 + z2 = 1)
and let A be the 3× 1-matrix (x,y,z) over R. We define P to be the kernel of the
homomorphism R3 → R1 given by multiplication with A.
a) Show that every element in P defines a tangent vector field of the unit sphere
S2 in R3.
b) Using the result of Problem 1.3, show that P is not a free R-module.
(Even though P ⊕R ∼= R3 is free.)
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Problem 1.5. Let M be a smooth manifold of dimension n. As in class we
denote by w = 1 + w1 + . . .+ wn the total Stiefel-Whitney class of M .
a) If M admits an immersion f : M ↪→ Rn+1, show that (1 + w1)w = 1 in
H∗(M ; Z/2).
b) If M admits an immersion f : M ↪→ Rn+2, show that (1 +w1 +w2

1 −w2)w = 1
in H∗(M ; Z/2).

Orientations and Stiefel-Whitney classes

Recall that an orientation of a real vector space V of dimension n > 0 is an
equivalence class of bases, where two ordered bases v1, . . . , vn and v′1, . . . , v

′
n are

said to be equivalent if and only if the matrix (aij) defined by the equation

v′i =
∑

aijvj

has positive determinant.

Let ξ be a real vector bundle given by the map π : E → B. An orientation
of ξ is a function assigning an orientation to each fiber in such a way that near
each point of B there is a local trivialization h : U × Rn → π−1(U) carrying the
canonical orientation of Rn in the fibers of U×Rn to the orientations of the fibers
in π−1(U). An oriented vector bundle ξ is a real vector bundle together with a
choice of orientation.

We would like to draw a connection between orientations and the first Stiefel-
Whitney class. Let B be a path-connected space and let E → B be a vector
bundle. Let π1(B)→ Z/2 be the homomorphism that assigns 0 or 1 to each loop
according to whether orientations of fibers are preserved or reversed as one goes
around the loop. Since Z/2 is abelian, this homomorphism factors through the
abelianization of π1(B), i.e., it factors through the first homology group H1(B; Z)
of B. A homomorphism H1(B; Z)→ Z/2 corresponds uniquely to an element in
H1(B; Z/2). Hence we have defined a class in H1(B; Z/2) which is zero exactly
if E is orientable.

Problem 1.6. Show that the just defined cohomology class is w1(E).

(It is ok if you assume for the proof that B is a CW -complex, but you may
also want to try to prove the general case.)


