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1. Introduction

Let G be a profinite group. An embedding problem for G is a solid diagram:

G

ϕ
˜︁ϕ

B
α

A

where A and B are finite groups, the solid arrows are continuous homomorphisms and 
α is surjective. A solution of an embedding problem is a continuous homomorphism of 
groups ˜︁ϕ : G → B which makes the diagram commutative. We say that the embedding 
problem above is real if for every involution t ∈ G with ϕ(t) ̸= 1 there is an involution 
b ∈ B with α(b) = ϕ(t), i.e., if involutions do not provide an obstruction for the existence 
of a solution.

Definition 1.1. Following Haran and Jarden [9, page 450] we say that a profinite group 
G is real projective if the subset Inv(G) of involutions is closed in G and if every real 
embedding problem for G has a solution.

Remark 1.2. By [9, Remark 7.6 and Proposition 7.7 on page 473], the condition that 
Inv(G) is closed in G is equivalent to the condition that G has an open subgroup without 
2-torsion which is used in [15, Definition 1.1]. To see that these conditions are equivlaent, 
let g ∈ G be an element which belongs to the closure of Inv(G) satisfies g2 = 1. Then 
g ∈ Inv(G) or g = 1. Thus, Inv(G) is closed in G if and only if G has an open subgroup 
U such that U ∩ Inv(G) = ∅.

By the work of Haran–Jarden [9], real projective groups play an important role in 
Galois theory as they are the absolute Galois groups of pseudo real closed fields. In fact, 
it follows from the work of Haran [8] and Haran–Jarden [9] that the absolute Galois 
groups of fields with virtual cohomological dimension at most one, which is a slightly 
larger class of fields, are real projective (see [15, Corollary 2.4]). For a real projective 
group G, we show in [15, Theorem 1.3] that the differential graded algebra C•(G,F2) of 
continuous cochains is formal, i.e., C•(G,F2) is quasi-isomorphic as differential graded 
algebras to its cohomology algebra. Roughly speaking, this means that the cohomology 
algebra of a real projective group already contains all the information of the differential 
graded algebra C•(G,F2). The purpose of the present paper is to show that, in fact, the 
maximal pro-2 quotient of a real projective group can be reconstructed entirely from the 
mod 2 cohomology ring. In particular, we show that pro-2 real projective groups can be 
reconstructed entirely from their mod 2 cohomology ring. In order to further describe 
our results we recall the following terminology from [15].
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Definition 1.3. We call an F2-algebra B• =
⨁︁

i≥0 B
i a graded Boolean algebra if B0 = F2

and there is a Boolean ring B (see Section 2) such that, for every i ≥ 1, we have Bi = B

and multiplication in B• is induced by B. We call an F2-algebra D• =
⨁︁

i≥0 D
i a dual 

algebra if D0 = F2, and Di = 0 for i ≥ 2. The connected sum D• ⊓ B• is the graded 
F2-algebra with (D• ⊓ B•)0 = F2, (D• ⊓ B•)i = Di ⊕ Bi for i ≥ 1 and multiplication 
D1Bi and BiD1 is set to be zero for all i ≥ 1.

In [15], we deduce from Scheiderer’s work in [20] that the mod 2 cohomology algebra 
of a real projective group is a connected sum of a dual and a Boolean graded algebra. 
Hence, in the terminology of Definition 1.6 below, the maximal pro-2 quotient of a 
real projective group is a cohomologically quasi-Boolean group. The anonymous referee 
of [15] suggested that the latter property may even characterise pro-2 real projective 
groups completely. The purpose of the present paper is to prove this conjecture. In 
fact, we prove the stronger fact that every pro-2 real projective group has an explicit 
description as a certain free pro-2 product with explicit generators and relations provided 
by the cohomology ring (see Theorem 1.9 below). This result significantly strengthens a 
consequence of the main result of [15]. According to the latter, for a real projective group 
G, the differential graded F2-algebra C•(G,F2) and its cohomology H•(G,F2) is Koszul. 
Hence, by a theorem of Positselski, the F2-linear co-algebra of the maximal pro-2 quotient 
H of G can be reconstructed explicitly from the cohomology ring H•(H,F2) ∼ = H•(G,F2)
using the bar construction (see Example 6.3 of [16]). Here we reconstruct the group itself 
via an even more transparent recipe. 

We now describe our main results in more detail. To do so we need the following 
constructions and terminology. First we recall free products.

Definition 1.4. Let G1 and G2 be two pro-p groups. Let G1 ∗ G2 be the discrete free 
product of G1 and G2 and let 𝒩 be the family of normal subgroups N of G such that 
(G1 ∗ G2)/N is a finite p-group and N ∩ G1, N ∩ G2 are open subgroups of G1, G2
respectively. Then

G1 ∗p G2 := lim←−−
N∈𝒩

(G1 ∗G2)/N

is called the free pro-p product of G1 and G2.

We note that the free pro-p product of G1 and G2 satisfies the usual universal property 
with respect to continuous homomorphisms from G1 and G2 to pro-p groups (see e.g. [11, 
Proposition 3.1.1]). Next we are going to define free products over topological spaces 
where we refer to [3], [6], [7], [8], [10], [11, Chapter 4], [12], [18, Chapter 5] for properties 
and variations of free products of profinite groups.

Definition 1.5. For every topological space X, let ˚X Z/2Z denote the group which is 
freely generated by the elements of X, subject to the relation that these elements are 
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involutions, and let 𝒩 be the family of normal subgroups N of ˚X Z/2Z such that 
(˚X Z/2Z)/N is a finite 2-group and the composition of the natural inclusion ι : X →
˚X Z/2Z and the quotient homomorphism ˚X Z/2Z → (˚X Z/2Z)/N is continuous 
with respect to the discrete topology on (˚X Z/2Z)/N . Then we set

B(X) := lim←−−
N∈𝒩

(˚
X
Z/2Z)/N

and refer to B(X) as the free pro-2 product of order two groups over X.

Finally, we are going to use the following terminology for pro-2 groups, where we refer 
to [22, 1.5 on pages 7--8] for the notion of a free pro-2 group.

Definition 1.6. We say that a pro-2 group is a Boolean group if it is isomorphic to B(X)
for some topological space X. We say that a pro-2 group is a quasi-Boolean group if 
it is the free product of a free pro-2 group and a Boolean group. We say that a pro-2
group is a cohomologically Boolean group if its mod 2 cohomology is a graded Boolean 
algebra. We say that a pro-2 group is a cohomologically quasi-Boolean group if its mod 
2 cohomology is the connected sum of a dual algebra and a graded Boolean algebra.

For a Boolean group B(X), we will see in Proposition 6.5 that we may assume without 
the loss of generality that X is profinite. We note that a Boolean group is the free product 
over a constant sheaf of a group of order 2 and a profinite space X in the sense of [11, 
Chapter 4], and quasi-Boolean groups are the real free groups in the category of pro-2
groups in the sense of [7] and [10]. We can now state our main results.

Theorem 1.7. Let G be a pro-2 group. Then the following are equivalent:

(i ) G is quasi-Boolean.
(ii ) G is real projective.
(iii ) G is the maximal pro-2 quotient of a real projective profinite group.
(iv ) G is cohomologically quasi-Boolean.

We note that the equivalence of (ii) and (iii) follows from the arguments developed 
in [10, Section 3], and the equivalence of (i) and (ii) has already been proven in [10, 
Corollary 3.3] and [7, Proposition 4.2] (assuming that X is a closed system of represen
tatives of the conjugacy classes of involutions in G). We give an alternative proof of the 
equivalence of (i) and (ii) with no assumption on X using results of [10] since this equiv
alence will follow from results we need to develop for the remaining equivalence with 
(iv). Hence the most interesting feature of Theorem 1.7 beyond the results of [7] and 
[10] is that it incorporates a purely cohomological characterisation of these pro-2 groups. 
Our proof is a bit more involved than it might be anticipated. The proof uses results of 
Haran–Jarden in the arithmetic of fields, for example a group-theoretical characterisa
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tion of real projective groups, a theorem on the existence of sections of profinite principle 
G-bundles, and profinite versions of two theorems of Quillen on group cohomology. We 
will also show the following:

Corollary 1.8. Let G be a pro-2 group. Then the following are equivalent:

(i ) G is Boolean.
(ii ) G is cohomologically Boolean.

Using our results we then demonstrate that quasi-Boolean groups can, in fact, be 
reconstructed from their mod 2 cohomology. For every set Y , let F (Y ) denote the free 
pro-2 group as defined in [22, Section 1.5 on pages 7--8].

Theorem 1.9. Let G be a quasi-Boolean pro-2 group such that H•(G,F2) is the connected 
sum of a dual algebra D• and a graded Boolean algebra B• associated to the Boolean 
ring B. Let Y be a basis of D1 and let X be the spectrum of B. Then G is isomorphic 
to F (Y ) ∗2 B(X).

Content

In Section 2 we give a modern exposition of the theory of Boolean rings, including 
Stone duality, using now standard tools from commutative algebra. We cover some back
ground material on profinite spaces, including the profinite completion functor, in the 
Section 3. In Section 4 we prove that profinite principal G-bundles have sections, a result 
originally announced by Morel in [13] without proof. We prove that the class of pro-2
real projective groups and the maximal pro-2 quotients of real projective groups are the 
same in Section 5, the key step being a simple group-theoretical lemma. In Section 6
we show that the class of quasi-Boolean and pro-2 real projective groups are the same, 
heavily relying on the main results of the previous sections and several theorems of [10]. 
Then, in Section 7, we present profinite versions of some classical results of Quillen on 
the cohomology of groups, partially following the suggestion at the end of [21], and use 
these results to derive a local-global principle for the cohomology of cohomologically 
quasi-Boolean groups analogous to Scheiderer’s theorem for real projective groups. In 
Section 8 we prove the main results using cohomological obstruction theory for central 
embedding problems and the local-global principle of the previous section.
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the anonymous referee of the present paper for many comments and suggestions that 
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2. A primer on Boolean rings

In this section we recall and prove the results we need on Boolean rings. In particular, 
we deduce Stone duality in Theorem 2.11. We note that the content of this section is
very similar to the content of [15, Appendix A]. We include it here for convenience of 
the reader.

Definition 2.1. A ring R is called Boolean if x2 = x for every x ∈ R.

Example 2.2. The field with two elements F2 is a Boolean ring. In fact, since x(1−x) = 0
for all x in a Boolean ring, F2 is the only Boolean integral domain. The direct product 
of Boolean rings is Boolean, and so, for every set X, the direct product ring:

FX
2 =

∏︂
i∈X

F2

is a Boolean ring. Now let X be a topological space, and let B(X) denote the ring of 
functions f : X → F2 which are continuous with respect to the discrete topology on F2. 
Since the subrings of Boolean rings are Boolean, and B(X) is a subring of FX

2 , we get 
that B(X) is Boolean, too.

Proposition 2.3. In a Boolean ring R the following hold:

(i ) we have 2x = 0 for every x ∈ R;
(ii ) every prime ideal 𝔭 is maximal, and R/𝔭 is the field with two elements;
(iii ) we have (x, y) = (x + y − xy) for every x, y ∈ R;
(iv ) every finitely generated ideal is principal.

Proof. Since 2x = (2x)2 = 4x2 = 4x, we get that 2x = 0 by subtracting 2x from both 
sides. Now let 𝔭 be a prime ideal in R. Then the quotient R/𝔭 is a Boolean ring. For 
every x ∈ R/𝔭, we have x(1− x) = 0 which implies that x = 0 or x = 1 since R/𝔭 is an 
integral domain. Claim (ii) follows. Note that

x(x + y − xy) = x2 + xy − x2y = x + xy − xy = x.

Hence x, y ∈ (x + y − xy). Since x + y − xy ∈ (x, y), claim (iii) is clear. Let I =
(x1, x2, . . . , xn) be a finitely generated ideal of R. Since

I = ((x1, x2, . . . , xn−1), xn),

we may assume by induction on n that I = (x, y) for some x, y ∈ R. Claim (iv) now 
follows from part (iii). □
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Definition 2.4. A topological space X is called totally separated if for all x ̸= y in X
there exists a closed and open set U ⊂ X such that x ∈ U and y / ∈ U . Equivalently, X
is totally separated if for any two distinct points x, y ∈ X there exist disjoint open sets 
U ⊂ X containing x and V ⊂ X containing y such that X is the union of U and V .

Proposition 2.5. The spectrum Spec(R) of a Boolean ring with the Zariski topology is 
compact and totally separated.

Proof. By [5, Proposition I.1.1.10], the spectrum of a commutative ring with a unity with 
the Zariski topology is compact. Thus, Spec(R) is compact. Now let 𝔭, 𝔮 ∈ Spec(R) be 
two distinct points. Since they are maximal ideals by part (ii) of Proposition 2.3, there 
is an x ∈ R such that x ∈ 𝔭 and x ̸∈ 𝔮. Since R/𝔭 = F2 by part (ii) of Proposition 2.3, 
the former is equivalent to 1 − x ̸∈ 𝔭. As usual, for every f ∈ R, let D(f) ⊆ Spec(R)
denote the open subset

D(f) = {𝔭 ∈ Spec(R) | f ̸∈ 𝔭}. (2.5.1)

Then 𝔭 ∈ D(1− x), 𝔮 ∈ D(x), the intersection D(x) ∩D(1− x) is empty by part (ii) of 
Proposition 2.3, while the union D(x) ∪ D(1 − x) is Spec(R), since if x, 1 − x ∈ 𝔪 for 
some 𝔪 ∈ Spec(R) then 1 ∈ 𝔪 which is a contradiction. □
Notation 2.6. Let R be a Boolean ring. Then for every a ∈ R the corresponding section 
of the structure sheaf of Spec(R) is the function

σ(a) : Spec(R) → F2

defined by σ(a)(𝔭) = 0 if a + 𝔭 = 𝔭, i.e., a ∈ 𝔭, and σ(a)(𝔭) = 1 if a / ∈ 𝔭. For 
every a ∈ R, σ(a) is continuous since {𝔭 ∈ Spec(R) | σ(a)(𝔭) = 1} = D(a) and 
{𝔭 ∈ Spec(R) | σ(a)(𝔭) = 0} = D(1− a) are open, because a ∈ 𝔭 if and only if 1− a / ∈ 𝔭, 
by part (ii) of Proposition 2.3. The induced map

σ : R→ B(Spec(R))

is a ring homomorphism.

Theorem 2.7. For every Boolean ring R, the map σ : R → B(Spec(R)) is an isomor
phism.

Proof. For every x ∈ R, we have xn = x by induction, so if x is nilpotent, then it is zero. 
Therefore the nilradical of R is zero. By [1, Proposition 1.8 on page 5], this shows that 
the intersection of all prime ideals in R is zero. Since σ(a) is the zero map if and only if 
a lies in the intersection of all prime ideals by definition, this shows that σ is injective. 
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It remains to show that σ is surjective. Let f : Spec(R) → F2 be a continuous function. 
Then the set

D(f) = {𝔭 ∈ Spec(R) | f(𝔭) = 1}

is a closed subset. Thus, D(f) is compact since Spec(R) is compact by Proposition 2.5. 
But D(f) is also open, so it can be covered by open subsets of the form D(a), where 
a ∈ R according to the Zariski topology. Since D(f) is compact, it can be covered by 
finitely many such, i.e.,

D(f) = D(a1) ∪D(a2) ∪ · · · ∪D(an)

for some a1, a2, . . . , an ∈ R. By part (iv) of Proposition 2.3, there is an a ∈ R such that 
(a) = (a1, . . . , an). Then

D(a) = {𝔭 ∈ Spec(R) | a ̸∈ 𝔭}
= {𝔭 ∈ Spec(R) | (a) ̸⊆ 𝔭}
= {𝔭 ∈ Spec(R) | (a1, . . . , an) ̸⊆ 𝔭}
= {𝔭 ∈ Spec(R) | ai ̸∈ 𝔭 for some i}
= D(a1) ∪D(a2) ∪ · · · ∪D(an),

so D(f) = D(a) = D(σ(a)). Since f and σ(a) take values in F2, we get that f = σ(a). □
Notation 2.8. Let X be a topological space. Then for every p ∈ X the set

β(p) = {x ∈ B(X) | x(p) = 0}

is the kernel of a surjective ring homomorphism B(X) → F2, so it is a maximal ideal in 
B(X). Consequently, we have an induced map

β : X → Spec(B(X)).

For every x ∈ B(X), we get from (2.5.1) for R = B(X) and f = x an equality of sets

β−1(D(x)) = {p ∈ X | x(p) = 1}.

Hence the preimage β−1(D(x)) is open. Since the sets {D(x) | x ∈ B(X)} form a sub
basis of Spec(B(X)), we get that β : X → Spec(B(X)) is continuous.

Theorem 2.9. When X is compact and totally separated, then β is a homeomorphism.
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Proof. Since X is compact and Spec(B(X)) is Hausdorff, it will be sufficient to show 
that β is a bijection by [2, I §9.4, Corollary 2 on page 87], which states that a continuous 
map from a compact space to a Hausdorff space is a homeomorphism if it is a bijection. 
Let x, y ∈ X be two distinct points. Since X is totally separated, there exist disjoint 
open sets U ⊂ X containing x and V ⊂ X containing y such that X is the union of U
and V . Let f : X → F2 be the characteristic function of U . Thus f(x) = 1 if x ∈ U and 
f(x) = 0 if x ∈ X \ U = V . Hence f is continuous and an element in B(X). Clearly 
f ∈ β(y), but f ̸∈ β(x), so β is injective.

For every ideal I ◁ B(X), let Z(I) ⊆ X denote the closed subset

Z(I) = {x ∈ X | f(x) = 0 (∀f ∈ I)}.

We claim that for every proper ideal I ◁B(X) the set Z(I) is non-empty. First consider 
the case when I = (f) for some f ∈ B(X). Then

Z(I) = {x ∈ X | f(x) = 0},

so if this set is empty, then f is the identically one function, and hence I = (1) = B(X)
is not proper, a contradiction. Next consider the case when I is finitely generated. Then 
I is principal by part (iv) of Proposition 2.3, so Z(I) is non-empty by the above. Finally, 
consider the general case. Then Z(I) is the intersection of sets of the form Z(J) where 
J is a finitely generated ideal of I. Since the latter collection of sets is closed under 
finite intersections, and each member is non-empty by the above, we get Z(I) is also 
non-empty, since X is compact.

Now let 𝔪 ◁B(X) be a maximal ideal. By the claim in the previous paragraph, there 
is an x ∈ Z(𝔪). Clearly β(x) ⊇ 𝔪, but 𝔪 is maximal, and hence β(x) = 𝔪. Therefore β
is surjective as well. □
Notation 2.10. Let BO denote the category of Boolean rings where morphisms are 
ring homomorphisms, and let CTS denote the category of compact, totally separated 
topological spaces where morphisms are continuous maps. There are two contravariant 
functors

B : CTS → BO, X ↦→ B(X),

which is well-defined as we saw in Example 2.2, and

S : BO → CTS, R ↦→ Spec(R),

which is well-defined by Proposition 2.5.

Theorem 2.11 (Stone duality). The functors B and S are a pair of dualities of categories.
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Proof. By Theorem 2.7, the map σ is a natural isomorphism between the identity of BO
and B ◦ S. By Theorem 2.9, the map β is a natural isomorphism between the identity 
of CTS and S ◦B. □
Corollary 2.12. Let R be a Boolean ring. Then the following are equivalent:

(i ) R is finite.
(ii ) R is finitely generated as an F2-algebra.
(iii ) R is Noetherian.
(iv ) R is Artinian.
(v ) Spec(R) is finite.
(vi ) R ∼ = FX

2 for a finite set X.

In this case R ∼ = FSpec(R)
2 .

Proof. Every Boolean ring is an F2-algebra, so if R is finite, then it is finitely gener
ated as an F2-algebra, and hence (i) implies (ii). Every finitely generated F2-algebra is 
Noetherian by Hilbert’s basis theorem, so (ii) implies (iii). Every Boolean ring is zero 
dimensional by part (ii) of Proposition 2.3, so if it is Noetherian, it is Artinian by a 
standard theorem in commutative algebra (see [1, Theorem 8.5 on page 90]). Therefore 
(iii) implies (iv). Every Artinian ring is a finite direct product of Artinian local rings 
(see [1, Theorem 8.7 on page 90]), so its spectrum is finite. Therefore (iv) implies (v). 
Now let R be a Boolean ring whose spectrum is finite. Since Spec(R) is totally separated 
by Proposition 2.5, it is discrete. This implies that FSpec(R)

2 is isomorphic to B(Spec(R)
by the definition of the B(X) made in Example 2.2 since Spec(R) is discrete. By Theo
rem 2.7, R is isomorphic to B(Spec(R)) via σ. Thus, we get R ∼ = FSpec(R)

2 . In particular, 
(v) implies (vi). If R ∼ = FX

2 for a finite set X, then R is clearly finite, so (vi) implies 
(i). □
Notation 2.13. Let FBO denote the category of finite Boolean rings where morphisms 
are ring homomorphisms, and let FTS denote the category of finite, totally separated 
topological spaces where morphisms are continuous maps. Note that the latter is the 
same as the category of finite, discrete topological spaces. There are two restrictions of 
functors

B|FTS : FTS → FBO, X ↦→ B(X)

and

S|FBO : FBO → FTS, R ↦→ Spec(R),

where the latter is well-defined by Corollary 2.12.
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Theorem 2.14. The functors B|FTS and S|FTS are a pair of dualities of categories.

Proof. The restrictions of the natural isomorphisms β and σ onto FTS and FBO are 
the respective required natural isomorphisms. □
Definition 2.15. Let R be a Boolean ring. We say that two elements x, y ∈ R are orthog
onal if xy = 0. We say that an element a ∈ R is an atom if it is non-zero and cannot be 
written as the sum of two non-zero orthogonal elements of R. The support of an element 
x ∈ R is the subset D(x) ⊆ Spec(R) introduced in (2.5.1).

Lemma 2.16. Let R be a Boolean ring. Then the following holds:

(i ) Two elements x, y ∈ R are orthogonal if and only if the intersection of their support 
is empty.

(ii ) A non-zero element a ∈ R is an atom if and only if its support cannot be written 
as the disjoint union of two non-empty open and closed subsets of Spec(R).

(iii ) Every two distinct atoms of R are orthogonal to each other.

Proof. For 𝔭 ∈ Spec(R), we have xy / ∈ 𝔭 if and only if x / ∈ 𝔭 and y / ∈ 𝔭. Hence D(xy) =
D(x) ∩D(y). Thus, the support of the product xy is the intersection of the supports of 
x and y. As explained in the first paragraph of the proof of Theorem 2.7, the nilradical 
of R is zero and hence the intersection of all prime ideals of R is zero by [1, Proposition 
1.8 on page 5]. Hence, for a ∈ R, D(a) = ∅ if and only if a = 0. This shows that the 
support of an element of R is empty if and only if the element is zero. Claim (i) now 
follows. By part (iii) of Proposition 2.3, (x, y) = (x + y), since xy = 0. Hence, as in the 
proof of Theorem 2.7, D(a) = D(x) ∪ D(y). By part (i), D(x) ∩ D(y) = ∅. Therefore, 
D(a) is the disjoint union D(a) = D(x) ⊔ D(y). Also, as in the end of the proof of 
Proposition 2.5, Spec(R) = D(x) ⊔D(1 − x) and Spec(R) = D(y) ⊔D(1 − y), so D(x)
and D(y) are open and closed subsets of Spec(R). Now assume that the support of a is 
the disjoint union of the non-empty open and closed subsets X and Y of Spec(R). Let 
fX , fY : Spec(R) → F2 be the characteristic functions of X and Y , respectively, which 
are continuous by the assumption that X and Y are open and closed subsets of Spec(R). 
Then, as in the proof of Theorem 2.7, there exist x, y ∈ R such that X = D(fX) = D(x)
and Y = D(fY ) = D(y). Since D(σ(a)) = D(a) = D(x)⊔D(y) = D(x+y) = D(σ(x+y)), 
we have σ(a) = σ(x + y), so by Theorem 2.7, a = x + y. Let a, b ∈ R be two atoms 
whose product is non-zero. Then a = ab + a(1 − b) and aba(1− b) = a2(b − b2) = 0, so 
a(1 − b) = 0 by the definition of atoms. We get that a = ab. The same reasoning for b
shows that b = ab. Therefore a = b, and hence (iii) holds. □
Corollary 2.17. Let R be a finite Boolean ring. Then the atoms of R form a natural basis 
of R as an F2-vector space whose elements are orthogonal to each other. Moreover, every 
orthogonal basis consists of atoms.
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Proof. By Corollary 2.12, the topological space Spec(R) is finite, discrete, and R ∼ = 
FSpec(R)

2 . Therefore, an element of R is an atom if and only if its support is a point by 
claim (ii) of Lemma 2.16. These clearly form a basis of R and they are orthogonal by 
claim (iii) of Lemma 2.16.

Now let e1, e2, . . . , en be an orthogonal basis. We need to show that each ei is an 
atom. We may assume without the loss of generality that i = 1. Let x ∈ R be such 
that σ(x) is the characteristic function of an element of the support of e1. Then x is an 
atom. The supports of e1 and ei, i ̸= 1, are disjoint since they are orthogonal by claim 
(i) of Lemma 2.16. Hence x and ei are orthogonal, so xei = 0. Now write x as a linear 
combination 

∑︁
j∈J ej of the ei for J ⊆ {1, . . . , n}. Since 0 = xei =

∑︁
j∈J ejei only if i

is not in J , the above argument implies x = 0 or x = e1. The former is not possible, 
since x is not zero. Hence we get x = e1, and e1 is an atom by the first paragraph of the 
proof. □
3. All about profinite spaces

In this section we collect the results we need about profinite topological spaces.

Definition 3.1. We say that a topological space is profinite if it is the projective limit of 
discrete, finite topological spaces. Recall that a topological space X is totally disconnected 
if for every point x ∈ X the connected component of x in X is {x}.

Every totally separated topological space is totally disconnected, but the converse is 
not true: there are totally disconnected topological spaces which are not Hausdorff, while 
every totally separated topological space is Hausdorff. However, the following is true:

Theorem 3.2. Let X be a topological space. Then the following are equivalent:

(i) X is profinite.
(ii) X is homeomorphic to a closed subspace of a product of discrete, finite topological 

spaces.
(iii) X is compact, totally disconnected and Hausdorff.
(iv) X is compact and totally separated.

Proof. First assume that X satisfies (i). Recall that a category is called small if both 
its class of objects and class of morphisms are sets and not proper classes. Let 𝒞 be 
a small category of discrete, finite topological spaces whose projective limit is X. Let 
Ob(𝒞) denote the set of its objects, and let Hom𝒞(A,B) denote the set of its morphisms 
for every A,B ∈ Ob(𝒞). By definition, X is homeomorphic to the closed subspace⎧⎨⎩ ∏︂

C∈Ob(𝒞)

xC ∈
∏︂

C∈Ob(𝒞)

C | f(xA) = xB (∀A,B ∈ Ob(𝒞), ∀f ∈ Hom𝒞(A,B))

⎫⎬⎭
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of 
∏︁

C∈Ob(𝒞) C, so X satisfies (ii).
Next assume that X satisfies (ii). Since finite topological spaces are compact, their 

direct product is also compact by Tychonoff’s theorem. Since X is a closed subspace of a 
compact space, it is compact, too. Moreover, the direct product of totally disconnected 
and Hausdorff topological spaces is totally disconnected and Hausdorff. Since discrete 
topological spaces are totally disconnected and Hausdorff, and every subspace of a totally 
disconnected and Hausdorff topological space is also totally disconnected and Hausdorff, 
we get that the same holds for X, too. Therefore X satisfies (iii).

Now we show that (iii) implies (iv). We will start with the following standard

Lemma 3.3. Assume that X is a Hausdorff compact topological space. Let C,D ⊂ X be 
two disjoint closed subsets. Then there exist disjoint open sets U ⊂ X containing C and 
V ⊂ X containing D.

Proof. First assume that C consists of a single point x ∈ X. Because X is Hausdorff for 
every y ∈ D, there are disjoint open sets Uy ⊂ X containing x and Vy ⊂ X containing 
y. Because D is closed, it is compact, so there is a finite subset y1, . . . , yn ∈ D such that 
Vy1 , . . . , Vyn

cover D. Then U = Uy1 ∩· · ·∩Uyn
and V = Vy1 ∪· · ·∪Vyn

are disjoint open 
subsets containing x and D, respectively.

Now consider the general case. By the above for every x ∈ C there are disjoint 
open sets Ux ⊂ X containing x and Vx ⊂ X containing D. Because C is closed, it is 
compact, so there is a finite subset {x1, . . . , xn} ⊂ C such that Ux1 , . . . , Uxn

cover C. 
Then U := Ux1 ∪ · · · ∪Uxn

and V := Vx1 ∩ · · · ∩ Vxn
are disjoint open subsets containing 

C and D, respectively. □
For every x ∈ X, let Z(x) denote the set of all open and closed subsets of X containing 

x, and let Zx denote the intersection of all elements of Z(x). By the definition of a totally 
separated topological space, we need to show that if y ∈ X is distinct from x then y ̸∈ Zx. 
Assume that this is not the case for some y. Then Zx contains at least two points, so it 
is not connected, since X is totally disconnected. Therefore Zx is the disjoint union of 
two non-empty subsets C,D ⊂ Zx which are closed in Zx. Since Zx is the intersection 
of closed subsets, it is closed in X. Therefore C and D are also closed in X. Hence by 
Lemma 3.3, we can find an open set U ⊂ X containing C such that U ∩D = ∅. Let E
be the complement of the union of U and V in X. It is closed in X, so it is compact 
since X is compact. Since U ∪ V contains Zx, the set E is covered by the union of the 
complements of elements of Z(x). Since E is compact, it is already covered by the union 
of finitely many such sets. Therefore there are finitely many sets Z1, . . . , Zn ∈ Z(x) such 
that Z = Z1 ∩ · · · ∩ Zn ⊆ U ∪ V .

Note that since each Zi is both open and closed, the same also holds for the finite 
intersection Z. Since each Zi contains x, the set Z also contains x. Both Z∩U and Z∩V
are open in Z, and Z is open in X, so Z ∩ U and Z ∩ V are open in X, too. Since Z
lies in the disjoint union of U and V , every element of X which is not in Z ∩U is either 
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not in Z or it is in Z ∩ V . Thus, we get Z ∩ U = X − [(X − Z) ∪ (Z ∩ V )]. Since Z is 
closed, X−Z is open and we just showed Z∩V is open. Hence Z ∩U is also closed since 
it is the complement of an open subset. The same argument with the roles of U and V
reversed shows that also Z ∩ V is closed.

One of Z ∩U and Z ∩ V contain x, say Z ∩U . Then Z ∩U ∈ Z(x) which means that 
Z∩U contains Zx. But Z∩U ∩Zx = Z∩(U ∩Zx) = Z∩C = C, which is a contradiction, 
since the complement of C in Zx is D, and the latter is non-empty. So condition (iii)
implies condition (iv).

Finally we show that (iv) implies (i). We start with the following

Notation 3.4. Let X be a topological space. We denote by ℛ(X) the set of open and 
closed equivalence relations R on X such that X/R is finite and discrete. We may view 
R ∈ ℛ(X) as an open and closed subset of X × X and we order elements in ℛ(X)
by inclusion, i.e., R1 ≥ R2 in ℛ(X) if and only if R1 ⊆ R2. This turns ℛ(X) into a 
directed partially ordered set. To see that ℛ(X) is directed, let R1, R2 ∈ ℛ(X). Then 
R1∩R2 ⊂ X×X is open and closed. Moreover, the quotient maps X/(R1∩R2) → X/R1
and X/(R1 ∩R2) → X/R2 are continuous and induce a continuous map X/(R1 ∩R2) →
X/R1 × X/R2. This map is injective since (x, y) ∈ R1 and (x, y) ∈ R2 if and only if 
(x, y) ∈ R1 ∩ R2. Thus, we can consider X/(R1 ∩ R2) as a subspace of the finite and 
discrete space X/R1 × X/R2, and hence X/(R1 ∩ R2) is finite and discrete, too. This 
shows R1 ≤ R1 ∩R2 and R2 ≤ R1 ∩R2 as required.

Definition 3.5. Let X be a topological space. We define the profinite completion of X
to be the profinite space ˆ︁X given by the projective limit ˆ︁X := limR∈ℛ(X) X/R in the 
category of topological spaces. It is equipped with a continuous map uX : X → ˆ︁X induced 
by the quotient maps X → X/R and the general properties of projective limits.

Remark 3.6. The continuous map uX : X → ˆ︁X satisfies the following universal property: 
For every continuous map f : X → Y , where Y is a discrete and finite topological space, 
there is a unique continuous map ˆ︁f : ˆ︁X → Y such that f = ˆ︁f ◦ uX . This follows from 
the fact that f induces an equivalence relation Rf ⊂ X ×X on X given by (x, x′) ∈ Rf

if and only if f(x) = f(x′). For x ∈ X, let y = f(x). Since Y is discrete, the preimage 
f−1(y) is both open and closed in X. Moreover, since Y is finite, there are finitely many 
equivalence classes under Rf . Hence the quotient space X/Rf is finite and discrete. This 
shows that Rf ∈ ℛ(X). Let f : X/Rf → Y be the induced map. The map ˆ︁f is now 
defined as the composition of the canonical map ˆ︁X → X/Rf and the map f .

Now we return to the proof of Theorem 3.2. To show that (iv) implies (i) it will 
be sufficient to show that uX is a homeomorphism when X is compact and totally 
separated. Since X is compact and ˆ︁X is Hausdorff by (i) ⇒ (iii) of Theorem 3.2 which 
we have already shown, it will be sufficient to show that uX is a bijection by [2, I §9.4, 
Corollary 2 on page 87] which states that a continuous bijection from a compact space 
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to a Hausdorff space is a homeomorphism. Let x, y ∈ X be two distinct points. Since X
is totally separated, there is a continuous function f : X → F2 such that f(x) ̸= f(y)
as we saw in the proof of Theorem 2.9. Then ˆ︁f(uX(x)) = f(x) ̸= f(y) = ˆ︁f(uX(y)), so 
uX(x) ̸= uX(y). Therefore uX is injective. In order to see that uX is also surjective, we 
will need the following

Lemma 3.7. Let X be a compact and totally separated space, and let C1, . . . , Cn ⊂ X

be pairwise disjoint closed subsets. Then there exist pairwise disjoint open and closed 
subsets U1, U2, . . . , Un ⊂ X such that Ui contains Ci for each i, and ∪iUi = X.

Proof. We first show that it is enough to prove the claim when n = 2 as the general case 
follows by induction. Indeed let n > 2 be such that we already know the claim for every 
m < n. Apply the case m = 2 to the closed subsets D1 = C1 and D2 = C2 ∪ · · · ∪ Cn

to get two disjoint open and closed subsets W1,W2 ⊂ X such that D1 ⊆W1, D2 ⊆W2, 
and W1 ∪W2 = X. Then apply the case m = n − 1 to C2, . . . , Cn inside W2, which is 
possible since W2 is closed in X, so it is compact and totally separated. Therefore there 
exist pairwise disjoint open and closed subsets V2, . . . , Vn ⊂W2 such that Vi contains Ci

for each i ≥ 2, and ∪iVi = W2. Since each Vi is open and closed in an open and closed 
subset of X, it is also open and closed in X. Therefore U1 = W1 and Ui = Vi for i ≥ 2
have the required properties.

Now consider the case n = 2. Since X is totally separated by assumption, it is also 
Hausdorff. By Lemma 3.3, there then exist disjoint open sets V1 ⊂ X containing C1
and V2 ⊂ X containing C2. Because X is totally separated, its open and closed sets 
form a subbasis for its topology, so for every x ∈ C1 there is a closed and open subset 
Vx ⊂ V1 containing x. Because C1 is closed, it is compact, so there is a finite subset 
x1, . . . , xn ∈ C such that Vx1 , . . . , Vxn

cover C. Their union U1 = Vx1 ∪ · · · ∪ Vxn
is the 

union of open and closed subsets, so it is also open and closed, and it is contained in 
V1. Its complement U2 is also open and closed and contains C2, so U1 and U2 have the 
required properties. □

Now assume that uX is not surjective, so there is an x ∈ ˆ︁X such that x ̸∈ uX(X). Since 
X is compact and ˆ︁X is Hausdorff by (i) ⇒ (iii) of Theorem 3.2 which we have already 
proven, the image uX(X) is closed in ˆ︁X by [2, I §9.4, Corollary 2 on page 87] which 
states that a continuous map from a compact space to a Hausdorff space is closed. So by 
Lemma 3.7 and since ˆ︁X is compact and totally separated by (i) ⇒ (iv) of Theorem 3.2, 
which we already have proved, there are disjoint open and closed subsets U1, U2 ⊂ ˆ︁X
such that uX(X) ⊆ U1 and x ∈ U2. Let f : ˆ︁X → F2 the characteristic function of U1. It 
is continuous, since U1 is open and closed. Let g : ˆ︁X → F2 be the identically 1 function. 
It is continuous, and f ◦ uX = g ◦ uX . However f ̸= g, as f(x) ̸= g(x), which violates 
the universal property. This is a contradiction, so (iv) implies (i). □
Remark 3.8. We note that the profinite completion of X as a topological space in Defini
tion 3.5 differs from the profinite completion of X as a set. The latter is the completion 
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of X as a space with the discrete topology. For example, if X is connected then the only 
non-empty open and closed equivalence relation in ℛ(X) is X ×X. As a set, however, 
there may be many equivalence relations on X such that X/R is finite. Moreover, if X
is a profinite space, the proof of (iv) ⇒ (i) of Theorem 3.2 shows that uX is a homeo
morphism. This may not be the case if we first equip X with the discrete topology.

Next, we show that profinite completion and the composition of functors Spec ◦B of 
Section 2 yield homeomorphic spaces.

Notation 3.9. Let X be again an arbitrary topological space, and let β : X → Spec(B(X))
be the map introduced in Notation 2.8. By Proposition 2.5 the space Spec(B(X)) is 
compact and totally separated, so it is profinite by (iv) ⇒ (i) of Theorem 3.2. So it is 
a projective limit of finite, discrete spaces, and hence by the universal property of the 
profinite completion there is a unique continuous map ˆ︁β : ˆ︁X → Spec(B(X)) such that 
β = ˆ︁β ◦ uX .

Theorem 3.10. The map ˆ︁β : ˆ︁X → Spec(B(X)) is a homeomorphism.

Proof. According to the universal property of the profinite completion it will be sufficient 
to show that for every continuous map f : X → Y , where Y is a discrete, finite topological 
space, there is a unique continuous map ˜︁f : Spec(B(X)) → Y such that f = ˜︁f ◦ β. For 
every continuous map m : T → Q of topological spaces, let m∗ : B(Q) → B(T ) denote 
the induced ring homomorphism. Since β∗ : B(Spec(B(X))) → B(X) is the inverse of 
σ in Notation 2.6 for R = B(X), β∗ is an isomorphism by Theorem 2.7. Hence there 
is a unique ring homomorphism r : B(Y ) → B(Spec(B(X))) such that β∗ ◦ r = f∗. By 
Theorem 2.11 there is a unique continuous map ˜︁f : Spec(B(X)) → Y such that r = ˜︁f∗. 
Then f∗ = β∗ ◦ ˜︁f∗ = ( ˜︁f ◦ β)∗, so it will be sufficient to show that every continuous 
map h : X → Y is uniquely determined by h∗. Since for every x ∈ X the point h(x) is 
uniquely determined by the ideal

{a ∈ B(Y ) | a(h(x)) = 0} = {a ∈ B(Y ) | h∗(a)(x) = 0},

this claim is clear. □
4. Profinite principal 𝑮-bundles

The purpose of this section is to prove Theorem 4.7 on the existence of sections for 
profinite principal G-bundles.

Definition 4.1. Let A be a topological space and let m : A→ B be a map. The quotient 
topology on B with respect to m is defined in the following way: a subset U ⊆ B is open 
if and only if m−1(U) ⊆ A is open. Now let A be a topological space equipped with a left 
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action of a group H. Let H\A denote the quotient of A with respect to the left action 
of H equipped with the quotient topology.

Lemma 4.2. The following hold:

(a ) Let A be a topological space and let m : A→ B be a map. Let B be equipped with the 
quotient topology with respect to m. Then a map h : B → C of topological spaces is 
continuous if and only if the composition h ◦m : A→ C is continuous.

(b ) Let A be a topological space equipped with a left action of a group H. Then the 
quotient map A→ H\A is open, that is, it maps open sets to open sets.

(c ) Let A,B be two topological spaces both equipped with a left action of a group H. 
Then the product topology on H\A × H\B is the quotient topology with respect to 
the quotient map

A×B −→ (H ×H)\(A×B) = H\A×H\B.

Proof. We first prove (a). Since the composition of continuous functions is continuous, 
the map h ◦m is continuous if h and m are. However, m is continuous by construction, 
so h ◦m is continuous if h is. On the other hand, if h ◦m is continuous and U ⊆ C is 
open, then (h ◦m)−1(U) ⊆ A is open. Therefore m−1(h−1(U)) = (h ◦m)−1(U) is also 
open, so by definition h−1(U) ⊆ B is open. Hence h is continuous, and now claim (a) is 
clear.

Next we show (b). Let U ⊆ A be open, and let q : A→ H\A denote the quotient map. 
Then q−1(q(U)) =

⋃︁
γ∈H γU . Since each γ ∈ H acts as a homeomorphism on A we get 

that γU is open. Therefore their union q−1(q(U)) is also open, and hence q(U) is open 
by the definition of the quotient topology. Claim (b) is now clear.

Finally, we show that (c) holds. Let qA : A → H\A and qB : B → H\B be the 
respective quotient maps. Since the map

qA × qB : A×B −→ H\A×H\B

is continuous with respect to the product topologies, the preimage of any open subset is 
open. Therefore we only need to show that if (qA× qB)−1(U) ⊆ A×B for a subset U ⊆
H\A×H\B is open, then U is open in the product topology. In this case, (qA×qB)−1(U)
is the union of sets of the form V ×W , where V ⊆ A and W ⊆ B are open. By part (b)
the set (qA× qB)(V ×W ) = qA(V )× qB(W ) is open in the product topology. Since U is 
the union of such subsets, it is open, and (c) follows. □
Lemma 4.3. Let X be a profinite space and let 𝒰 be an open covering of X. Then there 
is a finite open covering 𝒱 of X consisting of pairwise disjoint open and closed subsets 
which is subordinate to 𝒰 , i.e., each V ∈ 𝒱 is contained in some U ∈ 𝒰 .
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Proof. By (i) ⇒ (iv) of Theorem 3.2 and Lemma 3.7, the open and closed subsets of 
X form a subbasis of the topology on X. Therefore there is an open covering 𝒲 of X
consisting of open and closed subsets which is subordinate to 𝒰 . Since X is compact, 
we may assume without the loss of generality that 𝒲 is finite. Let R be the subring of 
B(X) generated by the characteristic functions of the elements of 𝒲. Since R is finitely 
generated, it is finite by Corollary 2.12.

Let 𝒱 be the collection of open and closed subsets of X whose characteristic functions 
are the atoms of R. By Theorem 2.9, we can identify them as the supports of the atoms 
of R. We claim that 𝒱 satisfies the required properties. Because R is finite, the set 𝒱 is 
also finite. Since distinct atoms of R are orthogonal by part (iii) of Lemma 2.16, their 
support is pair-wise disjoint by part (i) of Lemma 2.16. Let e1, e2, . . . , en be the atoms 
of R. By Corollary 2.17, we then have 1 = e1 + . . . + en, so the union of their supports 
is X. Also the elements of 𝒱 are open, since they are the supports of elements of B(X).

Now let e be an atom of R and pick an x in its support V . Since 𝒲 is a covering, 
there is a U ∈ 𝒲 such that x ∈ U . The characteristic function f of U is in R, so it is the 
sum of distinct atoms of R. Therefore, ef is either 0 or e by the orthogonality of atoms. 
In the first case, the intersection of the supports U and V is empty, but both contain x, 
a contradiction. Hence ef = e, so U contains V . Hence 𝒱 is subordinate to 𝒲 and since 
𝒲 is subordinate to 𝒰 , 𝒱 is subordinate to 𝒰 . □

Recall that a section of a continuous map of topological spaces f : Y → X is a 
continuous map s : X → Y such that f ◦ s is the identity map of X.

Proposition 4.4. Let f : Y → X be a continuous map such that X is profinite and every 
x ∈ X has an open neighbourhood U such that f |f−1(U) : f−1(U) → U has a section. 
Then f : Y → X has a section.

Proof. By assumption, there is an open cover 𝒰 of X such that f |f−1(U) : f−1(U) → U

has a section for each U ∈ 𝒰 . By Lemma 4.3 there is a finite open covering 𝒱 of 
X consisting of pairwise disjoint open and closed subsets which is subordinate to 𝒰 . 
Let V ∈ 𝒱 and pick a U ∈ 𝒰 which contains V . By assumption there is a sec
tion of f |f−1(U) : f−1(U) → U ; its restriction to V is a section sV : V → f−1(V ) of 
f |f−1(V ) : f−1(V ) → V . Since the elements of 𝒱 form an open and pairwise disjoint 
covering of X, the union 

⋃︁
V ∈𝒱 sV of these sections is a section of f : Y → X. □

Proposition 4.5. Let G be a compact group, and let X be a profinite space equipped with 
a continuous group action g : G × X → X. Assume that the action is free, i.e., no 
non-trivial element of G fixes a point of X. Then both G and G\X are profinite.

Proof. For the sake of simple notation, in the sequel we will denote any left action of 
any group on any set by multiplication on the left, if this does not lead to confusion. 
Since the action g is continuous and free, for every x ∈ X the map γ ↦→ γx from G onto 
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the G-orbit of x is continuous and injective. As G is compact and X is Hausdorff, we 
get that the image of this map is closed by [2, I §9.4, Corollary 2 on page 87]. Moreover, 
the map itself is a homeomorphism from G onto its image. As G is homeomorphic to a 
closed subspace of a profinite space, it is also profinite by the equivalence (i) ⇐⇒ (ii)
of Theorem 3.2.

Let q : X → G\X denote the quotient map. Since q is surjective, continuous, and 
X is compact, we get that G\X is compact by [2, I §9.4, Theorem 2 on page 87]. Let 
x, y ∈ G\X be two arbitrary distinct points. The preimages C = q−1(x) and D = q−1(y)
are disjoint G-orbits, and they are also closed by the previous paragraph. Therefore, by 
(i) ⇒ (iv) of Theorem 3.2 and Lemma 3.7, there exist disjoint open and closed subsets 
U, V ⊂ X such that U contains C and V contains D.

Set U ′ :=
⋃︁

γ∈G γU . Since each γ ∈ G acts as a homeomorphism, we get that U ′ is the 
union of open subsets, so it is open. It is also the continuous image of G×U . Both G,U

are compact since the latter is closed in a profinite space. Hence their product G× U is 
also compact by Tychonoff’s theorem. Thus, since X is Hausdorff, U ′ is closed by [2, I 
§9.4, Corollary 2 on page 87]. Also U ′ ∩D is empty; if it were not then γU ∩D ̸= ∅ for 
some γ ∈ G, but then U ∩D = γ−1(γU ∩D) ̸= ∅ using that D is G-invariant. This is 
a contradiction. A similar argument shows that V ′ =

⋃︁
γ∈G γV is open and closed, and 

V ′ ∩ C is empty.
Therefore W = U ′ ∩ V ′ is open and closed, and W is disjoint from C ∪D. Therefore 

its complement U ′′ = U ′ −W in U ′ is also open and closed, and contains C since U ′

does. Similarly V ′′ = V ′ −W is also open and closed, and contains D. Moreover, both 
U ′ and V ′ are G-invariant, so the same holds for W , and hence for U ′′ and V ′′. Because 
these sets are disjoint, their images q(U ′′) and q(V ′′) are also disjoint. They are also 
open by part (b) of Lemma 4.2, and since x, y are in q(U ′′) and q(V ′′), respectively, and 
were arbitrary, we get that G\X is at least Hausdorff.

Going back to the situation above, since U ′′ and V ′′ are closed in a profinite space, 
they are compact. Hence their images q(U ′′) and q(V ′′) are closed by [2, I §9.4, Corollary 
2 on page 87] since G\X is Hausdorff. Therefore they are a pair of disjoint open and 
closed neighbourhoods of x and y. Since x and y were arbitrary, we get that G\X is even 
totally separated, so it is profinite by (iv) ⇒ (i) of Theorem 3.2. □
Definition 4.6. Let X be a topological space and let G be a compact group. A profinite 
principal G-bundle over X is a continuous map f : Y → X equipped with a free contin
uous group action g : G × Y → Y such that Y is profinite, the map f is surjective and 
the preimage of each x ∈ X is a G-orbit.

Theorem 4.7. Let X be a Hausdorff space and let G be a compact group. Then every 
profinite principal G-bundle over X has a section.

Remarks 4.8. (i) In the situation of Theorem 4.7, both G and X are profinite. This is 
immediate for G from Proposition 4.5. Moreover there is a unique bijection ι : G\Y → X
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such that f = ι◦ q, where q : Y → G\Y denotes the quotient map. Since f is continuous, 
we get that ι is a continuous bijection by part (a) of Lemma 4.2. Since G\Y is compact 
by Proposition 4.5 and X is Hausdorff, we get that ι is a homeomorphism by [2, I §9.4, 
Corollary 2 on page 87]. Moreover, G\Y is actually profinite by Proposition 4.5, so the 
same holds for X, too.

(ii) The reader might wonder if it is true that each continuous, surjective map f : X →
Y of profinite spaces has a section. It turns out that those Y which have this property 
for every such f have a name: extremally disconnected spaces. They can be characterised 
by the following property: every set of open and closed subsets of Y has a supremum 
with respect to inclusion (see the Folk Theorem of [4] on page 485). Some spaces, such 
as the Čech–Stone compactification of discrete spaces have this property, but there are 
many profinite spaces which do not.

(iii) Theorem 4.7 was already stated by Morel, see the remark after Lemma 4 of [13] 
on page 359. However, no proof was given, just a remark that the strategy of the proof 
of Proposition 1 of [22] on page 4 works. This is what we will do, but for the convenience 
of the reader we will give a detailed argument.

Proof of Theorem 4.7. We start with the proof of the following significant special case:

Proposition 4.9. The theorem holds when G is finite.

Proof. By Proposition 4.4 it will be sufficient to show that every x ∈ X has an open 
neighbourhood U such that f |f−1(U) : f−1(U) → U has a section. Since f−1(x) is home
omorphic to G, it is non-empty, so there is a y ∈ Y such that f(y) = x. By [2, I §8.2, 
Proposition 4 on page 77], every finite subset of a Hausdorff space is closed. Because G
is finite and Y is Hausdorff by (i) ⇒ (iii) of Theorem 3.2, this implies that every point 
of Y is closed. Thus, by (i) ⇒ (iv) of Theorem 3.2 and Lemma 3.7, there exist pairwise 
disjoint open and closed subsets Uγ ⊂ Y for all γ ∈ G such that Uγ contains γy for each 
γ.

Set V :=
⋂︁

γ∈G γ−1Uγ . It is the intersection of finitely many open and closed subsets, 
so it is also open and closed. For every γ ∈ G we have γV ⊆ γ(γ−1Uγ) = Uγ , so 
V ∩ γV = ∅ for every γ ̸= 1 in G. Therefore the restriction of f to V is injective. Since 
V is closed, it is compact. Hence, since X is Hausdorff by (i) ⇒ (iii) of Theorem 3.2, 
f(V ) is closed in X by [2, I §9.4, Corollary 2 on page 87]. As a closed subspace of the 
Hausdorff space X, the image f(V ) is Hausdorff as well. Since V is compact, f(V ) is 
Hausdorff and f |V is a continuous bijection, f |V is a homeomorphism onto its image by 
[2, I §9.4, Corollary 2 on page 87]. Thus, f |V has a continuous inverse f(V ) → V . Since 
y = γ−1(γy) ∈ γ−1Uγ , we get that y ∈ γ−1Uγ for every γ ∈ G, so y ∈ V , and hence 
x ∈ f(V ).

Therefore it will be sufficient to show that f(V ) is open in X. Set Z :=
⋃︁

γ∈G γV . It 
is clearly G-invariant, and since it is the union of open subsets, it is also open. Therefore 
its complement W = Y −Z in Y is G-invariant and closed. Moreover, f(V ) = f(Z), as f
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is G-equivariant, i.e., f(γy) = f(y) for each γ ∈ G and y ∈ Y , and f is surjective, so the 
complement of f(V ) in X is f(W ). Since W is closed, it is compact, and X is Hausdorff, 
so f(W ) is closed by [2, I §9.4, Corollary 2 on page 87]. Therefore its complement f(V )
is open. □
Notation 4.10. Let N be a closed normal subgroup of G and let GN = N\G denote 
the quotient: it is a profinite group. Let rN : G → GN be the quotient map, which is 
a continuous group homomorphism. There is a unique map fN : N\Y → X such that 
f : Y → X is the composition of the quotient map qN : Y → N\Y and fN . There is 
a unique group action G × N\Y → N\Y which makes fN a G-equivariant map. The 
restriction of this action onto N is trivial, so it induces a group action gN : GN×N\Y →
N\Y .

Proposition 4.11. The map fN : N\Y → X equipped with the group action gN : GN ×
N\Y → N\Y is a profinite principal GN -bundle over X.

Proof. Since the composition f = fN ◦ qN is continuous, we get that the map fN is 
continuous by part (a) of Lemma 4.2. By part (c) of Lemma 4.2 the topology on GN ×
N\Y is the quotient topology with respect to rN×qN , so gN is continuous if gN◦(rN×qN )
is continuous by part (a) of Lemma 4.2. However, the composition qN ◦ g is continuous, 
so by the commutativity of the following diagram:

G× Y
g

rN×qN

Y

qN

GN ×N\Y gN
N\Y

the group action gN is continuous. Clearly the action gN is free, the map fN is sur
jective, and the preimage of each x ∈ X is a GN -orbit. Finally, N\Y is profinite by 
Proposition 4.5 since the action of N on Y is free and N is compact. □
Notation 4.12. Let M,N be a pair of closed normal subgroups of G such that M ⊆ N . 
There is a unique map fM,N : M\Y → N\Y such that qN : Y → N\Y is the composition 
of the quotient map qM : Y → M\Y and fM,N . Let 𝒮 denote the set whose elements 
are ordered pairs (N, s), where N is a closed normal subgroup of G and s is a section of 
fN : N\Y → X. Let ≥ denote the binary relation on 𝒮 such that (M, r) ≥ (N, s) if and 
only if M ⊆ N , and fM,N ◦ r = s. Since for every triple L ⊆ M ⊆ N of closed normal 
subgroups of G we have fM,N ◦ fL,M = fL,N , we get that ≥ is a partial ordering on 𝒮.

Proposition 4.13. The partially ordered set 𝒮 has a maximal element.

Proof. For N = G, the map fN is a bijection from a compact space onto a Hausdorff 
topological space, so it is a homeomorphism by part (i) of Remark 4.8. Therefore its 
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inverse is a section, and hence 𝒮 is not empty. So by Zorn’s lemma we only need to show 
that every chain 𝒞 ⊆ 𝒮 has a maximal element. Set C :=

⋂︁
(N,s)∈𝒞 N . Since C is the 

intersection of closed normal subgroups, it is also a closed normal subgroup of G.
For every (N, s) ∈ 𝒞, let Γ(N, s) ⊆ C\Y denote f−1

C,N (s(X)), the preimage of the 
section s : X → N\Y with respect to fC,N : C\Y → N\Y . By Proposition 4.11, N\Y
is profinite and hence N\Y is Hausdorff by (i) ⇒ (iii) of Theorem 3.2. Since X is 
compact, the image s(X) is closed by [2, I §9.4, Corollary 2 on page 87]. As fC,N is 
continuous, the preimage Γ(N, s) is also closed. Therefore, their intersection Γ ⊆ C\Y
is closed. By Proposition 4.11, C\Y is profinite and hence it is compact by (i) ⇒ (iii)
of Theorem 3.2. Hence the closed subset Γ is also compact. Hence it will be sufficient 
to show that the restriction fC |Γ : Γ → X, which is continuous, is also bijective. For, by 
[2, I §9.4, Corollary 2 on page 87] and since X is Hausdorff and Γ is compact, fC |Γ is 
a homeomorphism if it is bijective, so in this case its inverse is a section X → Γ, which 
combined with the inclusion Γ ⊆ C\Y gives the desired section X → C\Y .

Fix an x ∈ X. Then, for every (N, s) ∈ 𝒞, the intersection Γ(N, s) ∩ f−1
C (x) =

f−1
C,N (s(X)) ∩ f−1

C (x) is non-empty since fC = fN ◦ fC,N and s is a section of fN . 
Moreover, f−1

C (x) is a finite subset of C\Y which is a Hausdorff space by Proposition 4.11
and (i) ⇒ (iii) of Theorem 3.2 and hence f−1

C (x) is closed by [2, I §8.2, Proposition 4 
on page 77]. Thus, for every (N, s) ∈ 𝒞, the intersection Γ(N, s)∩ f−1

C (x) is a non-empty 
closed subset, and these form a descending chain with respect to inclusion. Hence, by the 
compactness of C\Y , their intersection Γ∩f−1

C (x) is non-empty. Therefore fC |Γ : Γ → X

is surjective.
Now assume that we have two distinct elements y, z ∈ Γ ∩ f−1

C (x). Then there is a 
unique 1 ̸= γ ∈ C\G such that z = γy. Since C is the intersection 

⋂︁
(N,s)∈𝒞 N , there is 

an (N, s) ∈ 𝒞 such that the image of γ under the quotient homomorphism C\G→ N\G
is not 1. By Proposition 4.11, both fC : C\Y → X and fN : N\Y → X are profinite 
principal bundles with respect to C\G and N\G, respectively, and the diagram

C\Y fC,N

fC

N\Y

fN

X

commutes. Moreover, the map fC,N is C\G-equivariant, i.e., fC,N (˜︁γ˜︁y) = ˜︁γfC,N (˜︁y) for 
all ˜︁γ ∈ C\G and ˜︁y ∈ N\Y . Since the action of N\G on N\Y is free by Proposition 4.11, 
this shows that fC,N (y) and fC,N (γy) = γfC,N (y) are still distinct. However, since y and 
z = γy lie in Γ, which is the intersection of all f−1

C,N (s(X)), and by construction of the 
partial ordering on 𝒮 in Notation 4.12, both fC,N (y) and fC,N (γy) lie in the intersection 
of s(X) and f−1

N (x), which consists of the single point s(x); a contradiction. Therefore 
fC |Γ : Γ → X is injective, too. □
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Now let (N, s) be a maximal element of 𝒮. If we have N = {1}, then the theorem holds. 
So let us assume that this is not the case, and pick a non-zero γ ∈ N . Since G is Hausdorff 
by (i) ⇒ (iii) of Theorem 3.2 and since the open normal subgroups form a basis of the 
topology on G by [19, Theorem 2.1.3], there is an open normal subgroup P ⊂ G such 
that γ ̸∈ P . Let M = N ∩ P . Since M is the intersection of closed normal subgroups, 
as every open subgroup is closed in a profinite group, M is a closed normal subgroup 
as well, and Γ = M\N is finite. Let Δ ⊆ M\Y denote f−1

M,N (s(X)), the preimage of 
the section s : X → N\Y with respect to fM,N : M\Y → N\Y . By Proposition 4.11, 
both fM : M\Y → X and fN : N\Y → X are profinite principal bundles with respect 
to M\G and N\G, respectively, and the diagram

M\Y fM,N

fM

N\Y

fN

X

commutes. Moreover, the map fM,N is M\G-equivariant, i.e., fM,N (γy) = γfM,N (y) for 
all γ ∈ Γ = M\G and y ∈ N\Y . The action gM restricted to Γ leaves Δ invariant since, 
for y ∈ Δ = f−1

M,N (s(X)) and γ ∈ Γ, we have fM,N (γy) = fM,N (y) ∈ s(X) as N acts 
trivially on N\Y .

Lemma 4.14. The restriction fM |Δ : Δ → X equipped with the group action gM |Γ×Δ :
Γ×Δ → Δ is a profinite principal Γ-bundle over X.

Proof. Since fM |Δ is the restriction of a continuous map, it is continuous, and for similar 
reasons gM |Γ×Δ is continuous and Γ-equivariant, too. Since X is compact and N\Y is 
Hausdorff, the image s(X) is closed by [2, I §9.4, Corollary 2 on page 87]. As fM,N

is continuous, the preimage Δ is also closed. Therefore, it is a closed subspace of the 
profinite space M\Y , and hence Δ is a profinite space. Finally, for every x ∈ X, since 
f−1
M (x) is an M\G-orbit, the fibre (fM |Δ)−1(x) is Γ-equivariantly bijective to Γ and 

hence it is a Γ-orbit. □
Now we can finish the proof of Theorem 4.7. By Lemma 4.14 and Proposition 4.9, there 

is a section r : X → Δ. Let r also denote the composition of this map with the inclusion 
map Δ → M\Y by slight abuse of notation. Then (M, r) ∈ 𝒮 and we now show that 
(M, r) ≥ (N, s). For every x ∈ X, we have fN (fM,N (r(x))) = x since fN ◦fM,N = fM and 
r is a section of fM . But, by definition of Δ = f−1

M,N (s(X)), fM,N (r(x)) is an element in 
s(X), i.e., there is an x′ ∈ X such that s(x′) = fM,N (r(x)). If x′ ̸= x, then fN (s(x′)) = x′

since s is a section of fN . Hence we must have x′ = x and s(x) = fM,N (r(x)), i.e., 
fM,N ◦ r = s. This shows (M, r) ̸= (N, s) in 𝒮. However, M is a proper subgroup of N
and hence (M, r) ̸= (N, s). This contradicts the maximality of (N, s), so N = {1}. This 
completes the proof of Theorem 4.7. □
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5. Maximal pro-2 quotients of real projective groups

The goal of this section is to prove Theorem 5.4. We first introduce the following type 
of embedding problems:

Definition 5.1. Let G be a profinite group. An embedding problem for G:

G

ϕ
˜︁ϕ

B
α

A

is a 2-embedding problem if both A and B are 2-groups.

Proposition 5.2. Let G be a pro-2 group such that every real 2-embedding problem over 
G has a solution. Then every real embedding problem over G has a solution, too.

To prove Proposition 5.2 we need the following group-theoretical

Lemma 5.3. Let f : C → D be a surjective homomorphism of finite groups such that D is 
a 2-group. Let P ⊆ C be a 2-Sylow subgroup and let x ∈ C be a 2-torsion element. Then

(i ) The restriction f |P : P → D is surjective.
(ii ) There is an h ∈ C such that h−1xh ∈ P and f(x) = f(h−1xh).

Proof. Let 2b denote the order of D. Let N be the kernel of f and write the order of N as 
2ar where r is not divisible by 2. Then the order of C is 2a+br, so the order of P is 2a+b, 
while the order of P ∩N is at most 2a. Since the kernel of the restriction f |P : P → D

is P ∩ N , we get that the image of f |P is at least 2b. Therefore f |P is surjective. This 
proves (i).

Since the order of the subgroup generated by x divides 2, there is a t ∈ C such 
that t−1xt ∈ P by the second Sylow theorem. By part (i), there is a v ∈ P such that 
f(v) = f(t). Set h = tv−1. Then

h−1xh = v(t−1xt)v−1 ∈ vPv−1 = P,

since v−1 ∈ P . Moreover,

f(h−1xh) = f(v)f(t)−1f(x)f(t)f(v)−1 = f(x)

using that f is a homomorphism and f(v) = f(t). This proves (ii). □
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Proof of Proposition 5.2. Let

G

ϕ
˜︁ϕ

B
α

A

be a real embedding problem E for G. Let H ⊆ A be the image of ϕ. Since G is a 
pro-2 group, H is a 2-group. Let C ⊆ B be the preimage of H with respect to α and let 
P ⊆ C be a 2-Sylow subgroup. By part (i) of Lemma 5.3 the restriction α|P : P → H is 
surjective. Clearly,

G

ϕ
˜︁ϕ

P
α|P

H

is a 2-embedding problem F for G such that if it has a solution then E also has a solution. 
Therefore it will be enough to show that F is real because of our assumptions on G. Let 
x ∈ G be an involution. By assumption there is a 2-torsion element g ∈ C such that 
α(g) = ϕ(x). Then there is a y ∈ P which is conjugate to g in C such that α(y) = ϕ(x)
by part (ii) of Lemma 5.3. Since y is conjugate to a 2-torsion element, it is also 2-torsion. 
So F is real. □
Theorem 5.4. Let G be a pro-2 group. Then the following are equivalent:

(i ) G is real projective.
(ii ) G is isomorphic to the maximal pro-2 quotient of a real projective group.

Proof. Since the maximal pro-2 quotient of a pro-2 group is the group itself, clearly (i)
implies (ii). Now let G be a pro-2 group which satisfies (ii). We start the proof of the 
other implication by showing that every real embedding problem for G has a solution. 
By Proposition 5.2 we need to show that any real 2-embedding problem E:

G

ϕ
˜︁ϕ

B
α

A

has a solution. Recall that a field K is called pseudo real closed if every absolutely 
irreducible variety defined over K which has a simple K<-rational point for every ordering 
< on K has a K-rational point, where K< denotes the real closure of the ordered field 
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(K,<). By the assumption, there is a real projective group Γ such that G is isomorphic 
to the maximal pro-2 quotient of Γ. By the work of Haran–Jarden in [9, Theorem 10.4 
on page 487], we can then choose a pseudo real closed field K such that Γ is the absolute 
Galois group of K. Let q : Γ → G be the corresponding quotient homomorphism. We 
claim that

Γ

ϕ◦q
˜︁ϕ

B
α

A

is a real embedding problem which we denote by F. Indeed, let x ∈ Γ be an involution 
such that ϕ ◦ q(x) is also an involution. Then q(x) ∈ G is also an involution, so there 
is an involution g ∈ B such that α(g) = ϕ(q(x)) = (ϕ ◦ q)(x). So F is real. Since Γ is 
real projective as the absolute Galois group of a pseudo real closed field, the embedding 
problem F has a solution ˜︁ϕ : Γ → B. But B is a 2-group, so ˜︁ϕ is the composition of q
and a continuous homomorphism G → B. The latter is a solution to E. To finish the 
proof of Theorem 5.4 we need the following notation and lemma.

Notation 5.5. For every profinite group G, let G2 denote its maximal pro-2 quotient and 
let tG : G → G2 denote the quotient map. This assignment is functorial, that is, for 
every homomorphism h : G → H of profinite groups there is a unique homomorphism 
h2 : G2 → H2 such that the diagram:

G
h

tG

H

tH

G2
h2

H2

is commutative.

Lemma 5.6. Let G be a profinite group, let H ⊆ G2 be an open subgroup, let I be the 
preimage t−1

G (H) ⊆ G, and let h : I → H denote the restriction of tG onto I. Then 
h2 : I2 → H2 = H is an isomorphism.

Proof. Since h is surjective, the map h2 is also surjective, so we only need to show that 
it is injective, too. Let 1 ̸= γ ∈ I2 be arbitrary. Then there is an open normal subgroup 
U ⊆ I2 such that γ ̸∈ U . Since tI is continuous, the preimage t−1

I (U) is an open subgroup 
of 2-power index in I. Since I is an open subgroup of 2-power index in G, we get that 
t−1
I (U) is an open subgroup of 2-power index in G, too. Set N :=

⋂︁
δ∈G δ−1t−1

I (U)δ. 
Clearly N is a normal subgroup. Since δ−1t−1

I (U)δ only depends on the coset t−1
I (U)δ, 

of which there are only finitely many, we get that N is a finite intersection of open 
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subgroups of 2-power index in G, so it is also an open subgroup of 2-power index in 
G. Therefore the subgroup tI(N) ⊆ I2 is the preimage of tG(N) ⊆ G2, but clearly 
γ ̸∈ tI(N), and hence h2(γ) ̸= 1. □

Now we return to the proof of Theorem 5.4. By Definition 1.1, it remains to show 
that G = Γ2 contains an open subgroup without 2-torsion. Let K be the field in
troduced above, and let Δ ⊆ Γ be the open subgroup corresponding to the finite 
extension K(

√−1)/K. As Δ is isomorphic to the absolute Galois group of K(
√−1), 

it has cohomological dimension at most 1 by [15, Corollary 2.4]. By the Rost–Voevodsky 
norm residue theorem [23] (formerly known as the Milnor conjecture), the pull-back 
map H•(Δ2,Z/2Z) → H•(Δ,Z/2Z) induced by the quotient map tΔ : Δ → Δ2 is an 
isomorphism. Therefore, Δ2 also has cohomological dimension at most 1. Hence, by 
[22, Proposition 14 on page 19], any closed subgroup of Δ2 has cohomological dimen
sion at most 1. Since a finite subgroup would have infinite cohomological dimension, 
Δ2 is torsion-free. Moreover, Δ has index dividing two in Γ, so Δ2 is isomorphic to 
the kernel of the homomorphism Γ2 → Z/2Z corresponding to the homomorphism 
Γ → Gal(K(

√−1)/K) ⊆ Z/2Z by Lemma 5.6. Therefore, Δ2 is an open, torsion-free 
subgroup of Γ2. This finishes the proof of Theorem 5.4. □
6. Pro-2 real projective groups versus quasi-Boolean groups

The goal of this section is to prove Theorems 6.6 and 6.18. We begin with the following 
recollection and notation.

Remark 6.1. The free product G1 ∗p G2 of pro-p groups G1 and G2 is the coproduct 
of G1 and G2 in the category of pro-p groups, that is, it has the following universal 
property. For j = 1, 2, let ιj : Gj → G1 ∗pG2 be the composition of the natural inclusion 
Gj → G1∗G2 and the quotient homomorphism G1∗G2 → G1∗pG2. Then for every pro-2
group G and for every pair of homomorphisms fj : Gj → G of pro-2 groups, there is a 
unique homomorphism f1∗pf2 : G1∗pG2 → G of pro-2 groups such that (f1∗pf2)◦ιj = fj
for j = 1, 2. This follows obviously from the definition when G is finite, and the general 
case follows by taking the projective limit.

Notation 6.2. Let G be a profinite group. Let 𝒴p(G) denote the subset of elements of 
order dividing p in G. We equip 𝒴p(G) with the subspace topology. Let 𝒳p(G) de
note the quotient of 𝒴p(G) by the conjugation action of G. We equip 𝒳p(G) with the 
quotient topology. Let 𝒴∗

p (G) denote the complement of 1 in 𝒴p(G), and let 𝒳 ∗
p (G)

denote the complement of the conjugacy class of 1 in 𝒳p(G). When p = 2 we let 
𝒴(G),𝒳 (G),𝒴∗(G),𝒳 ∗(G) denote 𝒴p(G),𝒳p(G),𝒴∗

p (G),𝒳 ∗
p (G), respectively. We note 

that 𝒴∗(G) equals the set Inv(G) of involutions in G.

Remark 6.3. Let X be a topological space. Recall from Definition 1.5 the free pro-2 prod
uct B(X). We note that B(X) has the following universal property: Let ιX : X → B(X)
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be the composition of the natural inclusion X → ˚X Z/2Z and the quotient homomor
phism ˚X Z/2Z→ B(X). Then, for every pro-2 group G and for every continuous map 
f : X → 𝒴(G), there is a unique homomorphism bf : B(X) → G of pro-2 groups such 
that bf ◦ ιX = f . This follows from the definition when G is finite, and the general case 
follows by taking the projective limit.

Notation 6.4. Let f : X → Y be a continuous map of topological spaces. Since iY : Y →
B(Y ) is continuous and its image lies in 𝒴(B(Y )), by the universal property in Remark 6.3
above there is a unique homomorphism B(f) : B(X) → B(Y ) of pro-2 groups such that 
B(f) ◦ ιX = ιY ◦ f . This makes the assignment X ↦→ B(X) into a functor.

Proposition 6.5. For every topological space X, the map B(uX) : B(X) → B( ˆ︁X) induced 
by the profinite completion uX : X → ˆ︁X is an isomorphism of pro-2 groups.

Proof. First we are going to show that B(uX) is surjective. We recall that B(X) is a 
profinite space by construction. Hence, by (i) ⇒ (iii) of Theorem 3.2, B(X) is compact 
and Hausdorff. Since the continuous image of a compact space is compact by [2, I §9.4, 
Corollary 1 on page 87], we conclude that the image of B(uX) is compact. Since B( ˆ︁X)
is Hausdorff, the image of B(uX) is closed in B( ˆ︁X) by [2, I §9.4, Corollary 2 on page 
87]. Hence it will be sufficient to show that the image is dense. In order to do so it will 
be enough to prove that, for every 2-group G and continuous surjective homomorphism 
f : B( ˆ︁X) → G, the composition f ◦B(uX) is surjective. Note that ˆ︁X generates ˚ˆ︂X Z/2Z, 
so f( ˆ︁X) generates G. By [19, Lemma 1.1.7], the image uX(X) of X is dense in ˆ︁X. This 
implies that the image f ◦ uX(X) is dense in f( ˆ︁X). But G is finite, so it is discrete, and 
hence f ◦ uX(X) is equal to f( ˆ︁X). So f ◦ uX(X) generates G, therefore f ◦ B(uX) is 
surjective.

Next we are going to show that B(uX) is injective. In order to do so it will be sufficient 
to show that B(uX)◦ιX : X → B( ˆ︁X) has the universal property described in Remark 6.3. 
Indeed then there is a continuous homomorphism f : B( ˆ︁X) → B(X) such that f ◦B(uX)◦
ιX is ιX , and hence f ◦ B(uX) is the identity of B(X). Now let G be a pro-2 group and 
f : X → 𝒴(G) be a continuous map. Since 𝒴(G) is profinite, there is a unique continuous 
map g : ˆ︁X → 𝒴(G) such that f = g ◦ uX because of the universal property of uX . 
Using the universal property of B( ˆ︁X) we get that there is a continuous homomorphism 
bg : B( ˆ︁X) → G of pro-2 groups such that bf ◦ ιˆ︂X = g. By the functoriality of the 
assignment X → B(X), ιˆ︂X ◦ uX = B(uX) ◦ ιX . Thus,

bf ◦ B(uX) ◦ ιX = bf ◦ ιˆ︂X ◦ uX = g ◦ uX = f,

as desired. □
We recall from Definition 1.6 that we call a pro-2 group Boolean if it is isomorphic to 

B(X) for some topological space X. By Proposition 6.5 we can always assume that X



A. Pál, G. Quick / Advances in Mathematics 482 (2025) 110619 29

is profinite. We call a pro-2 group quasi-Boolean if it is the free product of a free pro-2
group and a Boolean group.

Theorem 6.6. Every quasi-Boolean pro-2 group is real projective.

Proof. Let G be a quasi-Boolean pro-2 group. It will be sufficient to show that G is the 
maximal pro-2 quotient of a real projective group by Theorem 5.4. In order to do so, 
we will use a group-theoretical characterisation of real projective groups by Haran and 
Jarden. Following [10, Definition 1.1 on page 156] we define:

Definition 6.7. A profinite group D is said to be real free if it contains disjoint closed 
subsets X and Y such that X ⊆ 𝒴∗(D), 1 ∈ Y , and every continuous map ϕ from X ∪Y

into a profinite group H such that ϕ(x)2 = 1 for every x ∈ X and ϕ(1) = 1 extends to a 
unique homomorphism of D into H.

Theorem 6.8 (Haran–Jarden). A profinite group G is real projective if and only if G is 
isomorphic to a closed subgroup of a real free group.

Proof. This claim is [10, Theorem 3.6 on page 160]. □
Now we return to the proof of Theorem 6.6. For every set Y , let F (Y ) denote the free 

pro-2 group on Y as defined in [22, Section 1.5 on pages 7--8]. By assumption, G is the 
free product of a free pro-2 group F (Y ) and a Boolean group B(X) for a set Y and a 
profinite space X. By Theorem 6.8 it will be sufficient to show that G is the maximal 
pro-2 quotient of a real free profinite group. Let ˆ︁G be the free product ˚Y Z∗˚X Z/2Z, 
i.e., the group which is freely generated by the elements of the disjoint union of Y and 
X, subject to the relation that the elements in X are involutions. Let 𝒩 be the family 
of normal subgroups N of ˆ︁G such that

(i ) the quotient ˆ︁G/N is finite,
(ii ) the composition of the natural inclusion Y → ˆ︁G and the quotient homomorphism ˆ︁G→ ˆ︁G/N maps all but finitely many elements of Y to 1,
(iii ) the composition of the natural inclusion X → ˆ︁G and the quotient homomorphism ˆ︁G→ ˆ︁G/N is continuous with respect to the discrete topology on ˆ︁G/N .

Set

G = lim←−−
N∈𝒩

ˆ︁G/N.

Clearly G is the maximal pro-2 quotient of G. On the other hand, G is a real free profinite 
group. In fact, G is the group ˆ︁D(X,Y+, e) in [10, Lemma 1.3 on pages 156--157], where 
Y+ is the one-point compactification of Y equipped with the discrete topology, and 
e ∈ Y+ − Y is the point at infinity. This finishes the proof of Theorem 6.6. □
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Next, we set out to prove the converse, i.e., every real projective pro-2 group is quasi
Boolean. We begin with the following

Definition 6.9. Let A be an abelian profinite group. A complement of a closed subgroup 
B ⊂ A is a closed subgroup C ⊆ A such that B ∩ C is trivial, and B + C = A.

The following lemma is probably very well-known, but we could not find a convenient 
reference. For its proof we recall from [14, Definition 1.1.10] that the Pontryagin dual of 
a Hausdorff, abelian and locally compact group A is the group A∨ = Homcont(A,R/Z)
of continuous group homomorphisms from A to R/Z where the latter is equipped with 
the quotient topology inherited from R. The group A∨ is considered as a topological 
group with the compact-open topology. We recall that Pontryagin duality states that 
the canonical homomorphism A → (A∨)∨ is an isomorphism (see [14, Theorem 1.1.11] 
and the references therein). In particular, for an abelian profinite group G, the Pontryagin 
dual G∨ is a discrete abelian torsion group.

Lemma 6.10. Let G be a p-torsion abelian profinite group. Then the following holds:

(i ) there is an isomorphism G ∼ = FX
p for some set X,

(ii ) every closed subgroup of G has a complement.

Proof. The Pontryagin dual of G is a discrete Fp-linear vector space V since G is com
pact. Note that every isomorphism between discrete Fp-vector spaces is automatically a 
homeomorphism, so V is isomorphic to the direct sum F⊕X

p , equipped with the discrete 
topology, as a topological group for some set X. The Pontryagin dual of F⊕X

p is FX
p , 

which is isomorphic to G by Pontryagin duality. So claim (i) holds.
Assertion (ii) is equivalent to the following claim: let i : B → A be a monomorphism 

of p-torsion abelian profinite groups. Then there is a morphism j : A → B such that 
j ◦ i = idB . By Pontryagin duality, it is equivalent to the following claim: let p : V → U

be an epimorphism of Fp-linear vector spaces. Then there is a morphism r : U → V such 
that p ◦ r = idU . The latter is well-known. □

For later purposes, we record the following fact:

Theorem 6.11. Let G be a quasi-Boolean pro-2 group which is the free product of a free 
pro-2 group F and a Boolean group B(X) for a profinite space X. Let jX : X → 𝒳 (B(X))
denote the composition of the map iX : X → 𝒴(B(X)), the inclusion 𝒴(B(X)) ⊆ 𝒴(G), 
and the quotient map 𝒴(G) → 𝒳 (G). Then the map jX is a homeomorphism onto 𝒳 ∗(G).

To prove the theorem we first show the following

Lemma 6.12. For a real projective group G, the space 𝒳 ∗(G) is compact and totally 
separated.
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Proof. Since G is real projective, the subset 𝒴∗(G) = Inv(G) of involutions is closed in G. 
Hence Inv(G) is compact and totally separated by (i) ⇒ (iv) of Theorem 3.2. This shows 
that the quotient 𝒳 ∗(G) of conjugacy classes is also compact by [2, I §9.4, Theorem 2 
on page 87]. Now let x, y be two distinct involutions in G which are not conjugate. Since 
Inv(G) is totally separated, there is an open and closed subset U ⊂ Inv(G) such that 
x ∈ U and y / ∈ U . By definition of the subspace topology and since the open normal 
subgroups form a basis for the topology on G, there is an open normal subgroup ˜︁U of 
G such that U = Inv(G) ∩ ˜︁U . Since ˜︁U is conjugation-invariant, both U and Inv(G)− U

are conjugation-invariant. This implies that the image of U under the quotient map 
Inv(G) → 𝒳 ∗(G) is open and closed and contains the conjugacy class of x but not the 
class of y. This shows that 𝒳 ∗(G) is totally separated. □
Proof of Theorem 6.11. By Lemma 6.12, 𝒳 ∗(G) is totally separated and hence Haus
dorff. Since X is compact, it will therefore be sufficient to show that jX maps X onto 
𝒳 ∗(G) bijectively by [2, I §9.4, Corollary 2 on page 87]. Let x, y ∈ X be two distinct 
elements. Then there is a continuous map s : X → Z/2Z such that s(x) ̸= s(y). Let 
s : G → Z/2Z be the unique homomorphism such that the restriction of s onto F is 
trivial, and onto B(X) is bs (as defined in Remark 6.3). Under s the images of iX(x) and 
iX(y) are not conjugate, so they are not conjugate in G either. Therefore jX is injective. 
Since we may guarantee that s(x) is not a unit, we get that jX maps into 𝒳 ∗(G), too.

Now assume that there is a y ∈ 𝒳 ∗(G) which is not in the image of jX . Since X is 
compact and 𝒳 ∗(G) is Hausdorff, the image of jX is closed by [2, I §9.4, Corollary 2 
on page 87]. Thus, by Lemma 3.7, which applies to 𝒳 ∗(G) by Lemma 6.12, there is a 
continuous function r : 𝒳 ∗(G) → Z/2Z such that r ◦ jX is zero, and r(y) is non-zero. By 
Theorem 6.6, the pro-2 group G is real projective. Hence, by Scheiderer’s theorem [15, 
Theorem 2.11], there is a continuous homomorphism r : G → Z/2Z whose image under 
the map

π1 : H1(G,Z/2Z) → C(𝒳 ∗(G),Z/2Z)

is r where C(𝒳 ∗(G),Z/2Z) denotes the ring of continuous functions from 𝒳 ∗(G) to 
Z/2Z, where the latter is equipped with the discrete topology. Then the restriction of r
onto iX(X) is zero, so by the universal property of B(X) the restriction of r onto B(X) is 
also zero, and hence this homomorphism factors through the surjective homomorphism 
p1 : G→ F supplied by the universal property of free pro-2 products. But F is torsion
free (see [22, Corollary 4 on page 31]), so p1 is zero on any involution y in the conjugacy 
class y. Therefore r(y) = r(y) is zero, which is a contradiction. □
Theorem 6.13. Let G be isomorphic to the absolute Galois group of a field K. Then there 
is a continuous section s : 𝒳 ∗(G) → 𝒴∗(G).

Proof. Let H ⊆ G be the open subgroup corresponding to the finite extension 
K(
√−1)/K. Then H is isomorphic to the absolute Galois group of K(

√−1), and hence 
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it is torsion-free by the Artin–Schreier theorem. In particular, if H = G then 𝒳 ∗(G)
is empty and the claim is trivially true. Otherwise, H has index two in G. Then the 
theorem follows from Proposition 6.14 below and Theorem 4.7. □
Proposition 6.14. With the above assumptions, the map 𝒴∗(G) → 𝒳 ∗(G) is a profinite 
principal H-bundle with respect to the conjugation action of H on 𝒴∗(G), and 𝒳 ∗(G) is 
Hausdorff.

Proof. Clearly 𝒴(G) is closed in G. Since H is torsion-free, the subset 𝒴∗(G) is the 
intersection of 𝒴(G) and the complement of the open H in G, so it is closed, too. 
Let CG(y) denote the centraliser of y in G. Since G is profinite, we get that 𝒴∗(G)
is profinite. As G is isomorphic to an absolute Galois group, for every y ∈ 𝒴∗(G) we 
have H ∩ CG(y) = {1}, and hence H acts freely on 𝒴∗(G). This action is also clearly 
continuous.

We claim that every x ∈ G conjugate to y is already conjugate under H. Indeed, let 
z ∈ G be such that z−1xz = y. Since H has index 2 and y ̸∈ H, we have G = H ∪Hy. 
If z ∈ H the claim is clearly true. Otherwise z = hy for some h ∈ H, and hence 
x = zyz−1 = hyyy−1h−1 = hyh−1, so x is conjugate to y under H in this case, too. So the 
map 𝒴∗(G) → 𝒳 ∗(G) is the quotient map with respect to the action of H. Since 𝒴∗(G)
is open in 𝒴(G), the subspace topology on 𝒳 ∗(G) ⊂ 𝒳 (G) is the quotient topology with 
respect to the map in the claim. Therefore, 𝒳 ∗(G) is Hausdorff by Proposition 4.5. □
Corollary 6.15. Let G be a real projective profinite group. Then there is a continuous 
section s : 𝒳 ∗(G) → 𝒴∗(G).

Proof. By [9, Theorem 10.4 on page 487], every real projective profinite group is isomor
phic to the absolute Galois group of a pseudo real closed field. The claim then follows 
at once from Theorem 6.13. □
Remark 6.16. Note that Corollary 6.15 is also part (a) of [10, Lemma 3.5 on page 160]. 
We think, however, that our proof is more conceptual and derives a similar claim for a 
much larger class of groups.

Notation 6.17. For every pro-2 group G, let G∗ denote the maximal abelian 2-torsion 
quotient of G and, for every homomorphism b : G→ H of pro-2 groups, let b∗ : G∗ → H∗
denote the homomorphism induced by b.

Theorem 6.18. Let G be a real projective pro-2 group. Then G is quasi-Boolean.

For the proof of the theorem we recall the following facts from [22, Proposition 24 on 
page 30] for the special case p = 2:
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Proposition 6.19. Let G be a pro-2 group and I a set. Let

θ : H1(G,Z/2Z) → (Z/2Z)I

be a homomorphism. Then:

(a) There exists a morphism f : F (I) → G such that θ = H1(f) where F (I) denotes the 
free pro-2 group on I.

(b) If θ is injective, the morphism f is surjective. □
Proof of Theorem 6.18. Let X denote 𝒳 ∗(G), and let s : X → 𝒴∗(G) be the sec
tion furnished by Theorem 6.13. We let B denote the image of the homomorphism 
(bs)∗ : B(X)∗ → G∗ where bs : B(X) → 𝒴∗(G) ⊂ G is the homomorphism defined in 
Remark 6.3. Since B(X)∗ is compact and G∗ is Hausdorff, B is closed in G∗ by [2, I §9.4, 
Corollary 2 on page 87]. Let A ⊆ G∗ be a complement of B, which exists by part (ii)
of Lemma 6.10. By part (i) of Lemma 6.10, there is a set Y such that A ∼ = (Z/2Z)Y . 
Since F (Y )∗ ∼ = (Z/2Z)Y , by part (a) of Proposition 6.19 and Pontryagin duality, there 
is a continuous homomorphism h : F (Y ) → G such that h∗ : F (Y )∗ → G∗ maps F (Y )∗
isomorphically onto A. We set P = F (Y ) ∗2 B(X) and let α : P → G be the homomor
phism h ∗2 bs. Since (G1 ∗2 G2)∗ ∼ = (G1)∗ ⊕ (G2)∗ for every pair of pro-2 groups G1
and G2, we get that α∗ : P∗ → G∗ is an isomorphism. Hence, by part (b) of Proposi
tion 6.19 and Pontryagin duality, the map α is surjective. To finish the proof we need 
the following

Lemma 6.20. Let α : P → G be a continuous surjective homomorphism of real pro
jective profinite groups, and let X ⊆ 𝒴∗(P ) be a system of representatives of 
𝒳 ∗(P ). If α maps X bijectively onto a system of representatives of 𝒳 ∗(G), then 
there is a continuous injective homomorphism γ : G → P such that α ◦ γ =
idG.

Proof. This claim is part (b) of [10, Lemma 3.5 on page 160]. The proof relies on the 
projectivity of the Artin–Schreier structures attached to real projective groups (see [9, 
Proposition 7.7 on page 473]). □

We return to the proof of Theorem 6.18. By Theorem 6.6, the quasi-Boolean group 
P is real projective, while by Theorem 6.11 the subset X ⊆ P is a system of rep
resentatives of 𝒳 ∗(P ) mapped bijectively onto a system of representatives of 𝒳 ∗(G), 
so the conditions in Lemma 6.20 above hold. Therefore there is a continuous in
jective homomorphism γ : G → P such that α ◦ γ = idG. Then the composition 
α∗ ◦ γ∗ = (α ◦ γ)∗ = (idG)∗ = idG∗ is the identity, and α∗ is an isomorphism, so γ∗
is an isomorphism, too. Therefore, γ is surjective by part (b) of Proposition 6.19 and 
Pontryagin duality. So γ is an isomorphism, and hence G is quasi-Boolean. This finishes 
the proof of Theorem 6.18. □
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7. Quillen’s theorems and their consequences

The goal of this section is to prove Corollary 7.24.

Definition 7.1. Following Quillen we say that a homomorphism R → S of graded anti
commutative rings is finite if S is a finitely generated module over R.

This definition is a bit ambiguous since it does not specify whether we consider S as 
a left R-module or a right R-module. However, note that S is a finitely generated left 
R-module if and only if it is a finitely generated right R-module. Indeed if S is a finitely 
generated left R-module then it is also generated by a finite set H ⊂ S of homogeneous 
elements. But the left R-module generated by H is the same as the right R-module 
generated by H since S is anti-commutative. Therefore S is also finitely generated as a 
right R-module. The converse could be proved similarly.

Theorem 7.2 (Quillen). Let G be a pro-p group and let H ⊆ G be a finite subgroup. Then 
the homomorphism H•(G,Z/pZ) → H•(H,Z/pZ) is finite.

Proof. Recall that every finite subset of a Hausdorff space is closed by [2, I §8.2, Propo
sition 4 on page 77]. Since G is Hausdorff, we conclude that H is a closed subgroup. 
Hence the homomorphism H•(G,Z/pZ) → H•(H,Z/pZ) is well-defined. The analog of 
the theorem was proved by Quillen when G is finite [17, Corollary 2.4 on page 555], and 
we now show that the general case follows as an easy corollary. Indeed let N ◁ G be 
an open normal subgroup such that the restriction of the quotient map q : G → G/N

to H is injective. Then the homomorphism H•(G/N,Z/pZ) → H•(H,Z/pZ) induced 
by the composition of the inclusion map H → G and q is finite by the above. Since 
this homomorphism factors through H•(G,Z/pZ) → H•(H,Z/pZ), the latter is also 
finite. □
Corollary 7.3. Let G be a pro-p group and let H ⊆ G be a subgroup of order p. Then the 
homomorphism Hn(G,Z/pZ) → Hn(H,Z/pZ) is non-zero for infinitely many n.

Proof. Assume that the claim is false and there is a natural number d such that the 
image of Hn(G,Z/pZ) → Hn(H,Z/pZ) is zero for n ≥ d. By Theorem 7.2, we can find 
a finite subset S ⊂ H•(H,Z/p) of homogeneous elements which generate H•(H,Z/pZ)
as a H•(G,Z/pZ)-module. Let d′ be the maximal degree of the elements of S. Then 
Hn(H,Z/pZ) = 0 for every n ≥ d + d′. But, since H has order p, Hn(H,Z/pZ) ̸= 0 for 
every n which is a contradiction. □

We now recall the following types of algebras from [15].

Definition 7.4. We call an F2-algebra B• =
⨁︁

i≥0 B
i a graded Boolean algebra if B0 = F2

and there is a Boolean ring B such that, for every i ≥ 1, we have Bi = B, and, for 
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every pair i, j ≥ 1, the multiplication Bi × Bj → Bi+j is the multiplication in the 
ring B = Bi = Bj = Bi+j . We call an F2-algebra D• =

⨁︁
i≥0 D

i a dual algebra if 
D0 = F2, and Di = 0 for i ≥ 2. The connected sum D• ⊓ B• is the graded F2-algebra 
with (D• ⊓ B•)0 = F2, (D• ⊓ B•)i = Di ⊕ Bi for i ≥ 1 and multiplication D1Bi and 
BiD1 is set to be zero for all i ≥ 1.

Remark 7.5. In [15] we show that dual and graded Boolean algebras are Koszul algebras. 
In particular, they are quadratic algebras and their connected sum is their direct sum 
as quadratic algebras.

The results in [15] are the motivation for the following terminology which we recall 
from the introduction.

Definition 7.6. We say that a pro-2 group is a cohomologically Boolean group if its mod 2
cohomology is a graded Boolean algebra. We say that a pro-2 group is a cohomologically 
quasi-Boolean group if its mod 2 cohomology is the connected sum of a dual algebra and 
a graded Boolean algebra.

For every commutative ring R, let 𝒩 (R) denote the nilradical of R.

Lemma 7.7. Let G be a cohomologically quasi-Boolean pro-2 group. Then the quotient 
H•(G,Z/2Z)/𝒩 (H•(G,Z/2Z)) is a graded Boolean algebra.

Proof. Let H•(G,Z/2Z) be the connected sum of a dual algebra D• and a graded 
Boolean algebra B•. Since all elements of D1 are nilpotent while no element of B• is, 
we see that D1 is the nilradical of the ring H•(G,Z/2Z) = D• ⊓B•. Hence the quotient 
H•(G,Z/2Z)/𝒩 (H•(G,Z/2Z)) is isomorphic to B•. □
Definition 7.8. Let G be a cohomologically quasi-Boolean pro-2 group. Let B denote, up 
to isomorphism, the unique Boolean ring such that the associated graded Boolean algebra 
B• is isomorphic to H•(G,Z/2Z)/𝒩 (H•(G,Z/2Z)) which exists by Lemma 7.7. We say 
that a continuous homomorphism k : G → Z/2Z is a quasi-canonical homomorphism if 
the image of the associated cohomology class k ∈ H1(G,Z/2Z) under the quotient map

H•(G,Z/2Z) → H•(G,Z/2Z)/𝒩 (H•(G,Z/2Z))

is the unit of B.

Remark 7.9. Quasi-canonical homomorphisms k ∈ H1(G,Z/2Z) can be characterised by 
the following property: for every n > 0 and c ∈ Hn(G,Z/2Z), we have c2 = c ∪ kn. To 
prove this assertion, we write H• = H•(G,Z/2Z) as the connected sum of D• and B•. 
Then k ∈ H1(G,Z/2Z) is quasi-canonical if and only if its image under the quotient 
map H•/D•>0 → B• is the identity map since D•>0 is the nilradical of H• as pointed 



36 A. Pál, G. Quick / Advances in Mathematics 482 (2025) 110619 

out in the proof of Lemma 7.7. The identity c2 = c∪kn holds for all elements of B•, and 
this identity is equivalent to k being the identity in B by definition of the multiplication 
in B• in Definition 7.4. The same identity trivially holds for all c in D•>0 and any k.

Definition 7.10. An elementary p-group H is a group isomorphic to (Z/pZ)n for some n. 
The rank of H is n, that is, its dimension as a vector space over Z/pZ. The elementary 
rank of a pro-p group G is the supremum of all natural numbers r such that G has a 
subgroup isomorphic to an elementary p-group of rank r.

Proposition 7.11. Let G be a cohomologically quasi-Boolean pro-2 group. Then the fol
lowing holds:

(i ) every involution x ∈ G is not in the kernel of any quasi-canonical homomorphism;
(ii ) the elementary rank of G is at most one.

Proof. To prove (i), let x ∈ G be an involution, let H ⊆ G be the subgroup generated by 
x and let i : H → G be the inclusion map. Let i• : H•(G,Z/2Z) → H•(H,Z/2Z) denote 
the pullback homomorphism on cohomology. Assume that there is a quasi-canonical 
homomorphism k ∈ H1(G,Z/2Z) whose restriction to H is zero, or equivalently i•(k) =
0. By Corollary 7.3, there is an n > 0 and a c ∈ Hn(G,Z/2Z) such that i•(c) ∈
Hn(H,Z/2Z) is non-zero. Then, by Remark 7.9,

0 ̸= i•(c)2 = i•(c2) = i•(c ∪ kn) = i•(c) ∪ i•(k)n = 0

using that H•(H,Z/2Z) is isomorphic to a polynomial ring in one variable over Z/2Z, 
but this is a contradiction. Therefore (i) holds.

To prove (ii), assume to the contrary that G contains a subgroup H isomorphic to 
an elementary 2-group of rank 2. Then the kernel of the restriction of a quasi-canonical 
homomorphism to H is non-trivial. This contradicts part (i), so claim (ii) is true. □
Definition 7.12. Let p be a prime number and let h : R → S be a homomorphism of 
graded anti-commutative algebras over Fp. We say that h is an F -isomorphism if

(i ) for every homogeneous element r in the kernel of h we have rn = 0 for some n,
(ii ) for every homogeneous element s in S the power spn is in the image of h for some 

n.

Lemma 7.13. Let f : B• → C• be an F -isomorphism between graded Boolean algebras. 
Then f is an isomorphism.

Proof. Since graded Boolean algebras have no nilpotent elements, we get that f is in
jective by condition (i) of Definition 7.12. Next we show that f is surjective. Since f is 
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clearly an isomorphism in degree zero, it will be sufficient to show that for every posi
tive integer n and x ∈ Cn there is a y ∈ Bn such that f(y) = x. By condition (ii) of 
Definition 7.12, there is a positive integer m and a z ∈ Bnm such that f(z) = xm. Since 
B• is a graded Boolean algebra, the m-th power map Bn → Bnm is an isomorphism, so 
there is a y ∈ Bn such that ym = z, and hence f(y)m = f(ym) = f(z) = xm. Since C•

is also a graded Boolean algebra, the m-th power map Cn → Cnm is an isomorphism, 
so f(y) = x. □
Notation 7.14. For every profinite group G, let 𝔄(G) denote the set of all subgroups of 
G which are finite elementary abelian p-groups. We note that, since G is Hausdorff, all 
such subgroups are closed by [2, I §8.2, Proposition 4 on page 77]. Also note that 𝔄(G)
form a category where morphisms are maps f : A→ B such that there is an x ∈ G such 
that f(y) = x−1yx for every y ∈ A. Note that the assignment G ↦→ 𝔄(G) is functorial, 
that is, for every continuous homomorphism h : G → H there is an induced functor 
𝔄(h) : 𝔄(G) → 𝔄(H). For every open normal subgroup N ◁ G, let 𝔄(G,N) denote the 
image of 𝔄(G) under the functor 𝔄(πN) : 𝔄(G) → 𝔄(G/N) induced by the quotient map 
πN : G→ G/N .

Notation 7.15. Let DGACp denote the category of graded anti-commutative algebras 
over Z/pZ. For every profinite group G, let FG : 𝔄(G) → DGACp be the functor given by 
the rule A ↦→ H•(A,Z/pZ). For every open normal subgroup N◁G, let FG,N : 𝔄(G,N) →
DGACp denote the restriction of FG/N onto 𝔄(G,N). For every G and N as above, let 
H•

𝔄(G,Z/pZ) and H•
𝔄(G,N,Z/pZ) denote the inductive limit of the functors FG and 

FG,N , respectively.

Notation 7.16. Let G and N be as above. Then for every A ∈ 𝔄(G,N), let πN,A : A →
πN (A) be the map induced by the restriction of πN onto A. We let π•

N,A : H•(πN (A), 
Z/pZ) → H•(A,Z/pZ) denote the pullback homomorphism on cohomology. Note that 
for every

c = {cA ∈ H•(A,Z/pZ) | A ∈ 𝔄(G,N)} ∈ H•
𝔄(G,N,Z/pZ)

the collection

𝔞N (c) = {π•
N,A(cπN (A)) ∈ H•(A,Z/pZ) | A ∈ 𝔄(G)}

lies in H•𝔄(G,Z/pZ) and the map 𝔞N : H•
𝔄(G,N,Z/pZ) → H•

𝔄(G,Z/pZ) is a homo
morphism of graded anti-commutative algebras over Z/pZ. Let H•

𝔄(G,Z/p) denote the 
union of the images of these homomorphisms as N ranges over the set of all open nor
mal subgroups of G. Since these images form an inductive system, H•

𝔄(G,Z/pZ) is a 
graded subalgebra of H•

𝔄(G,Z/pZ). Clearly, when G is finite, we have H•
𝔄(G,Z/pZ) =

H•
𝔄(G,Z/pZ).
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Proposition 7.17. Let G be a profinite group of elementary rank at most 1 such that 
there is an open normal subgroup of G without p-torsion. Then Hn

𝔄(G,Z/pZ) =
C(𝒳 ∗

p (G),Z/pZ) for every n > 0 where C(𝒳 ∗
p (G),Z/pZ) denotes the ring of continuous 

functions from 𝒳 ∗
p (G) to Z/pZ, where the latter is equipped with the discrete topology.

Remark 7.18. Let F (𝒳 ∗
p (G),Z/pZ) denote the group of all Z/pZ-valued functions on 

𝒳 ∗
p (G). For every non-zero A ∈ 𝔄(G), we have A ∼ = Z/pZ. Hence Hn(A,Z/pZ) =

Z/pZ, every element c ∈ Hn
𝔄(G,Z/pZ) gives rise to a function 𝒴∗

p (G) → Z/pZ which is 
conjugation-invariant, and hence descends to a function f(c) : 𝒳 ∗

p (G) → Z/pZ. The map 
f : Hn

𝔄(G,Z/pZ) → F (𝒳 ∗
p (G),Z/pZ) is an isomorphism. So the precise meaning of the 

claim of Proposition 7.17 is that the image of Hn
𝔄(G,Z/pZ) under f and C(𝒳 ∗

p (G),Z/pZ)
are equal as subgroups of F (𝒳 ∗

p (G),Z/pZ).

Proof of Proposition 7.17. First let c ∈ Hn
𝔄(G,Z/pZ) be arbitrary. Then there is an open 

normal subgroup N ◁G and a d ∈ Hn
𝔄(G,N,Z/pZ) such that c = 𝔞N (d). Since for every 

pair M,N of open normal subgroups of G such that M ⊆ N the image of 𝔞M contains the 
image of 𝔞N , we may assume that N does not contain p-torsion without the loss of gener
ality by shrinking N if it is necessary. Then πN induces a map π#

N : 𝒳 ∗
p (G) → 𝒳 ∗

p (G/N), 
and f(c) is the composition of π#

N with the function Im(π#
N ) → Z/pZ corresponding to 

d. Since both π#
N and the latter function are continuous, we get that f(c) is continuous, 

too.
Now let c ∈ C(𝒳 ∗

p (G),Z/pZ) be arbitrary, and let g : 𝒴∗
p (G) → Z/pZ be the con

tinuous function we get by composing the quotient map 𝒴∗
p (G) → 𝒳 ∗

p (G) with c. Since 
the translates of normal open subgroups of G form a sub-basis for the topology on G, 
for every x ∈ 𝒴∗

p (G) there is an open normal subgroup Nx ◁ G such that g is constant 
on xNx ∩ 𝒴∗

p (G). Since there is an open normal subgroup of G without p-torsion, the 
subspace 𝒴∗

p (G) is closed, and hence compact, so there is a finite subset S ⊆ 𝒴∗
p (G) such 

that 𝒴∗
p (G) ⊆ ⋃︁

x∈S xNx.
Since N =

⋂︁
x∈S Nx is the intersection of finitely many normal open subgroups, it is 

an open normal subgroup, too. We may even assume that N does not contain p-torsion 
without the loss of generality by shrinking N if it is necessary, as above. Then g is 
constant on xN ∩ 𝒴∗

p (G) for every x ∈ 𝒴∗
p (G), and hence c is the composition of π#

N

above with a function d : Im(π#
N ) → Z/pZ. □

Notation 7.19. Let G be as above, and, for every A ∈ 𝔄(G), let iA : A → G be the 
inclusion map. For every c ∈ H•(G,Z/pZ), the collection

qG(c) = {i•A(c) ∈ H•(A,Z/pZ) | A ∈ 𝔄(G)}

lies in H•
𝔄(G,Z/pZ) since every conjugation of G induces the identity on H•(G,Z/pZ). 

The resulting map qG : H•(G,Z/pZ) → H•
𝔄(G,Z/pZ) is a homomorphism of graded 

anti-commutative algebras over Z/pZ.



A. Pál, G. Quick / Advances in Mathematics 482 (2025) 110619 39

Lemma 7.20. The homomorphism qG maps H•(G,Z/pZ) into H•
𝔄(G,Z/pZ).

Proof. Let c ∈ Hn(G,Z/pZ) be arbitrary. Then there is an open normal subgroup 
N ◁ G and a d ∈ Hn(G/N,Z/pZ) such that c = π•

N (d). Let ϕN : Hn
𝔄(G/N,Z/pZ) →

Hn
𝔄(G,N,Z/pZ) be the map induced by the inclusion functor 𝔄(G,N) → 𝔄(G/N). 

Clearly qG(c) = 𝔞N (ϕN (qG/N (d))), and hence the claim holds. □
Theorem 7.21 (Quillen–Scheiderer). For every profinite group G, the homomorphism

qG : H•(G,Z/pZ) → H•
𝔄(G,Z/pZ)

is an F -isomorphism.

Proof. This theorem was proved by Quillen when G is finite (see [17, Theorem 7.1 on 
page 567] which is actually a more general result). At the end of [21] (see 8.6 and 8.7 
on pages 279--80) Scheiderer pointed out that there is an easy limit argument to derive 
the theorem above as a corollary. In fact, he proved that qG satisfies property (i) in 
Definition 7.12. We complete his argument by showing property (ii) for the convenience 
of the reader.

Notation 7.22. For every pair M,N of open normal subgroups of G such that M ⊆ N , 
let πM,N : G/M → G/N be the quotient map, and let 𝔄(G,M,N) denote the image of 
the functor 𝔄(πM,N ) : 𝔄(G/M) → 𝔄(G/N).

Lemma 7.23. For every open normal subgroup N ◁ G, there is open normal subgroup 
M ◁G such that M ⊆ N and 𝔄(G,M,N) = 𝔄(G,N).

Proof. This is the Claim on page 280 of [21]. □
Now let c ∈ Hn

𝔄(G,Z/pZ) be arbitrary, and let N ◁ G be an open normal subgroup 
such that there is a

d = {dA ∈ H•(A,Z/pZ) | A ∈ 𝔄(G,N)} ∈ Hn
𝔄(G,N,Z/pZ)

with the property c = 𝔞N (d). By Lemma 7.23, there is an open normal subgroup M ◁G

such that M ⊆ N and 𝔄(G,M,N) = 𝔄(G,N). For every A ∈ 𝔄(G/M), let πM,N,A : A→
πM,N (A) be the map induced by the restriction of πM,N onto A. The fact 𝔄(G,M,N) =
𝔄(G,N) means that the collection

e =
{︁
π•
M,N,A(dπM,N (A)) ∈ H•(A,Z/pZ) | A ∈ 𝔄(G/M)

}︁
is a well-defined element of Hn

𝔄(G/M,Z/pZ) = Hn
𝔄(G/M,Z/pZ). Applying Quillen’s 

theorem to e we get that there is a positive integer m and an f ∈ Hn(G/M,Z/pZ) such 
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that epm = qG/M (f). Let ϕM : Hn
𝔄(G/M,Z/pZ) → Hn

𝔄(G,M,Z/pZ) be the map induced 
by the inclusion functor 𝔄(G,M) → 𝔄(G/M) as above. Then 𝔞M (ϕM (e)) = 𝔞N (d), and 
hence

cp
m

= 𝔞M (ϕM (e))p
m

= 𝔞M (ϕM (ep
m

)) = 𝔞M (ϕM (qG/M (f))) = qG(π∗
N (f)).

This finishes the proof of Theorem 7.21. □
As a consequence we get the following

Corollary 7.24. Let G be a cohomologically quasi-Boolean pro-2 group. Then for every 
i > 0, there is a natural homomorphism

πi : Hi(G,Z/2Z) → C(𝒳 ∗(G),Z/2Z)

which is an isomorphism for i > 1 and surjective for i = 1.

Proof. Let C•(𝒳 ∗(G),Z/2Z) denote the graded Boolean algebra associated to the 
Boolean ring C(𝒳 ∗(G),Z/2Z). By Proposition 7.11, the conditions of Proposition 7.17
apply to G. Hence, by Theorem 7.21, there is an F -isomorphism:

π∗ : H•(G,Z/2Z) → C•(𝒳 ∗(G),Z/2Z).

This map is zero on the nilradical of H•(G,Z/2Z), so it induces an F -isomorphism:

H•(G,Z/2Z)/𝒩 (H•(G,Z/2Z)) → C•(𝒳 ∗(G),Z/2Z) (7.24.1)

of graded Boolean algebras by Lemma 7.7, which must be an isomorphism by 
Lemma 7.13. Since the nilradical of H•(G,Z/2Z) consists of degree one elements, the 
claim follows. □
8. Proof of the main theorem and some consequences

Now we are ready to give the proofs of our main results.

Proof of Theorem 1.7. The implication (i) ⇒ (ii) is Theorem 6.6, while the implication 
(ii) ⇒ (i) is Theorem 6.18. We already saw that (ii) trivially implies (iii) in the proof 
of Theorem 5.4. Now assume that G is the maximal pro-2 quotient of a real projective 
profinite group H. As explained in [15, Section 10], H•(H,Z/2Z) is the connected sum 
of a dual algebra and a graded Boolean algebra. The pull-back map H•(H,Z/2Z) →
H•(G,Z/2Z) is an isomorphism by the Rost–Voevodsky norm residue theorem [23], so 
we get that G is cohomologically quasi-Boolean. Therefore the implication (iii) ⇒ (iv)
holds. To finish the proof of Theorem 1.7, we show the remaining implication (iv) ⇒ (i)
in the following
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Theorem 8.1. Every cohomologically quasi-Boolean pro-2 group G is real projective.

Proof. By part (i) of Proposition 7.11, G has an open subgroup without 2-torsion. By 
Remark 1.2, it will therefore be sufficient to show that every real embedding problem 
for G has a solution. By Proposition 5.2, we need to show that any real 2-embedding 
problem for G has a solution. In fact we will prove something stronger.

Definition 8.2. For every group G, let G# denote the set of its conjugacy classes. For 
every x ∈ G, let x# ∈ G# denote the conjugacy class of x, and, for every homomorphism 
h : G → H of groups, let h# : G# → H# denote the map on conjugacy classes induced 
by h. Now let G be a profinite group. An embedding problem with lifting data (E, f) for 
G is an embedding problem E:

G

ϕ

˜︁ϕ
B

α
A

and a continuous map f : 𝒳 ∗(G) → 𝒳 (B) such that α# ◦ f = ϕ#|𝒳∗(G). A solution to 
this embedding problem with lifting data is a solution ˜︁ϕ to the embedding problem E
such that ˜︁ϕ#|𝒳∗(G) = f .

Proposition 8.3. Let G be a quasi-Boolean pro-2 group G. Then every 2-embedding prob
lem with lifting data for G has a solution.

Proof. In order to prove the claim in a first significant case, we need to recall some basic 
definitions and results.

Definition 8.4. The kernel, denoted Ker(E), of an embedding problem E as one in Defi
nition 5.1 is the kernel of α. We say that E is central if Ker(E) lies in the centre of B. In 
this case the conjugation action of G makes Ker(E) into a constant abelian G-module. 
Assume now that the embedding problem E is central. Let ˆ︁ϕ : G → B be a continuous 
map such that α ◦ ˆ︁ϕ = ϕ. Then the map c : G×G→ Ker(E) given by the rule:

c(x, y) = ˆ︁ϕ(xy)ˆ︁ϕ(y)−1ˆ︁ϕ(x)−1 ∈ Ker(E), (x, y ∈ G)

is a cocycle, and its cohomology class o(E) ∈ H2(G,Ker(E)), called the obstruction class 
of E, does not depend on the choice of ˆ︁ϕ, only on E. Moreover, E has a solution if and 
only if o(E) is zero.

Remark 8.5. The obstruction class has the following important naturality property: Let 
E be an embedding problem for G as above, and suppose that E is central. Let χ : H → G

be a continuous homomorphism of profinite groups. Then



42 A. Pál, G. Quick / Advances in Mathematics 482 (2025) 110619 

H

ϕ◦χ
˜︁ψ

B
α

A

is a central embedding problem E(χ) for H with the same kernel as E, and we have

χ•(o(E)) = o(E(χ)),

where χ• : H•(G,Ker(E)) → H•(H,Ker(E)) is the pull-back map on cohomology.

Lemma 8.6. Let G be a quasi-Boolean pro-2 group G. Then every 2-embedding problem 
with lifting data for G and with a kernel isomorphic to Z/2Z has a solution.

Proof. Let (E, f) be an embedding problem with lifting data for G as in Definition 8.2, 
and assume that its kernel is isomorphic to Z/2Z. Since the automorphism group of the 
latter is trivial, we get that E is central. Because E is equipped with lifting data, it is 
real, that is, for every subgroup H ⊆ G of order 2 the embedding problem E(iH) has a 
solution, where iH : H → G is the inclusion map. Therefore, by Remark 8.5, the image 
of o(E) under the homomorphism:

π2 : H2(G,Z/2Z) → C(𝒳 ∗(G),Z/2Z)

is zero. So by Corollary 7.24, the obstruction class o(E) vanishes, and hence E has a 
solution.

Let s : G→ B be such a solution. Let r : 𝒳 ∗(G) → Z/2Z = Ker(α) be the map given 
by the rule:

r(x) =
{︄

0 , if s#(x) = f(x),
1 , otherwise. 

Since s#×f : 𝒳 ∗(G) → B#×B# is continuous with finite image, and r(x) only depends 
on s#(x) and f(x) for every x ∈ 𝒳 ∗(G), we get that r is continuous. Therefore, by 
Corollary 7.24, there is a continuous homomorphism χ : G → Z/2Z = Ker(α) whose 
image under the homomorphism

π1 : H1(G,Z/2Z) → C(𝒳 ∗(G),Z/2Z)

is r. Let ˜︁ϕ : G → B be the function given by the rule ˜︁ϕ(g) = s(g)χ(g). Since it is the 
product of two continuous functions, ˜︁ϕ is continuous. Moreover,

˜︁ϕ(gh) = s(gh)χ(gh) = s(g)s(h)χ(g)χ(h) = s(g)χ(g)s(h)χ(h) = ˜︁ϕ(g)˜︁ϕ(h)
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using that s and χ are homomorphisms and Ker(α) is central. Therefore ˜︁ϕ is a homo
morphism. Since α◦ ˜︁ϕ = α◦s = ϕ, we get that ˜︁ϕ is a solution to E. Now let y ∈ 𝒴∗(G) be 
arbitrary. If s#(y#) = f(y#), then ˜︁ϕ(y) = s(y), and hence ˜︁ϕ(y)# = s(y)# = s#(y#) =
f(y#). If s#(y#) ̸= f(y#), then ˜︁ϕ(y) ̸= s(y), so ˜︁ϕ(y) is the unique element of α−1(ϕ(y))
distinct from s(y). Since α−1(ϕ(y)) contains an element of f(y#), as α is surjective, and 
this element is not s(y), it must be ˜︁ϕ(y). So ˜︁ϕ(y)# = f(y#) in this case, too. □

Now we are going to show Proposition 8.3 in the general case. Let (E, f) be an 
embedding problem with lifting data for G as in Definition 8.2. Since B is a 2-group, it 
has a filtration by normal subgroups:

{1} = N0 ⊂ N1 ⊂ · · · ⊂ Nn = Ker(α)

such that the kernel of the quotient map πk : B/Nk → B/Nk+1 is isomorphic to Z/2Z
for every k = 0, 1, . . . , n− 1. Let qk : B → B/Nk be the quotient map. Note that it will 
be sufficient to show that for every continuous homomorphism h : G → B/Nk+1 such 
that h#|𝒳∗(G) = q#

k+1 ◦ f = π#
k ◦ q#

k ◦ f the embedding problem Ek:

G

h

˜︁h
B/Nk πk

B/Nk+1

with lifting data q#
k ◦ f has a solution for every k = 0, 1, . . . , n. Indeed let rk : B/Nk →

A = B/Nn be the quotient map. Then we would get by descending induction on the 
index k that the embedding problem:

G

ϕ

˜︁ϕ
B/Nk rk

A

with lifting data q#
k ◦ f has a solution. The claim is now clear from the case k = 0. How

ever, Ek has a kernel isomorphic to Z/2Z, so (Ek, q
#
k ◦f) has a solution by Lemma 8.6. □

In order to conclude the proof of Theorem 8.1 it will be sufficient to show that every 
real 2-embedding problem E for G as above can be equipped with lifting data. By 
assumption, for every x ∈ 𝒳 (A) in the image Im(ϕ#|𝒳∗(G)), there is a y ∈ 𝒳 (B) such that 
α#(y) = x, i.e., there is a section g : Im(ϕ#|𝒳∗(G)) → 𝒳 (B) of the restriction α#|𝒳 (B). 
Since g is a map between discrete spaces, it is continuous, therefore the composition 
f = g ◦ ϕ#|𝒳∗(G) is also continuous, and hence (E, f) is a 2-embedding problem with 
lifting data. □
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Proof of Corollary 1.8. First assume that G is Boolean, i.e., G is isomorphic to B(X)
for some profinite space X. Then it is cohomologically quasi-Boolean by Theorem 1.7, so 
H•(G,Z/2Z) is the connected sum of a dual algebra D• and a graded Boolean algebra 
B•. Assume that D• is non-trivial, so there is a non-zero c ∈ D1 ⊂ Hom(G,Z/2Z). 
Then c ∪ c = 0 as D2 = 0, so the restriction of c onto every involution in the image of 
iX : X → 𝒴(B(X)) is zero. Therefore, by the universal property of B(X) of Remark 6.3, 
the homomorphism corresponding to c is also zero, a contradiction. Hence G is cohomo
logically Boolean.

Next assume that G is cohomologically Boolean. Then it is quasi-Boolean by The
orem 1.7, so G is the free product of a free pro-2 group F and a Boolean group 
B(X) for a profinite space X. Assume that F is non-trivial. Then there is a non-zero 
c ∈ Hom(F,Z/2Z). Let π1 : G → F be the surjective homomorphism supplied by the 
universal property of free pro-2 products, and let c be the composition of π1 and c. Then 
c ∪ c = 0, and hence c ∪ c = 0. Since H•(G,Z/2Z) is a graded Boolean algebra, this 
implies that c is zero, a contradiction. Therefore G is Boolean. □
Remark 8.7. Let G be a Boolean group and let f : G → Z/2Z be a quasi-canonical 
homomorphism. By Remark 7.9, the homomorphism f is characterised by the property 
that, for every n > 0 and c ∈ Hn(G,Z/2Z), we have c2 = c ∪ kn. But H•(G,Z/2Z) is a 
graded Boolean algebra by Corollary 1.8, and hence f is unique. Therefore, it is justified 
to call it the canonical homomorphism of the Boolean group G.

Proof of Theorem 1.9. By assumption, G is isomorphic to F (Y ′) ∗2 B(X ′) for a set 
Y ′ and a profinite space X ′. We are actually going to show a stronger claim than 
in the theorem, namely, that the profinite spaces X and X ′ are homeomorphic, and 
the sets Y ′ and Y are bijective. By Theorem 6.11, the profinite spaces X ′ and 𝒳 ∗(G)
are homeomorphic, and, as we saw in the proof of Corollary 7.24, the graded Boolean 
algebras B• and C•(𝒳 ∗(G),Z/2Z) are isomorphic (see (7.24.1)). Therefore, by Stone 
duality of Theorem 2.11, the profinite spaces X and X ′ are homeomorphic, too. Us
ing Notation 6.17, we have G∗ = F (Y ′)∗ ⊕ B(X ′)∗. Hence we have H1(G,Z/2Z) =
H1(F (Y ′),Z/2Z) ⊕ H1(B(X ′),Z/2Z). However, since H1(B(X ′),Z/2Z) ∼ = B1 by the 
above, we get that H1(F (Y ′),Z/2Z) ∼ = D1, and hence H1(G,Z/2Z) = D1⊕B1. There
fore, Z/2Z⊕Y ′ ∼ = Z/2Z⊕Y , and hence there is a bijection between the sets Y ′ and Y . □
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