Massey products and formality for real projective groups CIRM Motivic homotopy in interaction 04 November 2024

> Gereon Quick NTNU

This is joint work with Ambrus Pál

Norm Residue Theorem:

Voevodsky, Rost, ...

Milnor K-theory $T(k^{\times})/(u \otimes (1-u), u \neq 0, 1)$ for simplicity k field with char(k) $\neq p$ containing primitive pth root of unity

continuous cohomology of absolute Galois group

 $K^{M}_{\bullet}(k)/_{p} \xrightarrow{\cong} H^{\bullet}(k, \mathbb{F}_{p})$

quadratic algebra

- generators in degree 1
- relations in degree 2

strong restriction on which \mathbb{F}_p -algebras can occur as the Galois cohomology of a field

Which quadratic algebras occur as $H^{\bullet}(k, \mathbb{F}_p)$?

Additional properties? $H^{\bullet}(k, \mathbb{F}_p)$ quadratic algebra

Is $K^{M}_{\bullet}(k)/p$ Koszul?

• A is Koszul if coh. $\operatorname{Ext}_{A}^{\bullet}(\mathbb{F}_{p}, \mathbb{F}_{p}) = A^{!}$ is the quadratic dual

• Conjecture of If k contains a primitive pth root of Positselski-Vishik-Voevodsky: unity, then $H^{\bullet}(k, \mathbb{F}_p)$ is Koszul

"The algebra $H^{\bullet}(k, \mathbb{F}_p)$ has a very nice and simple structure."

Positselski: local and global fields

 Mináč-Panini-Quadrelli-Tân: finite fields, pseudo algebraically closed fields, elementary type pro p-groups, ...

Additional properties? $H^{\bullet}(k, \mathbb{F}_p)$ quadratic algebra

• Is $H^{\bullet}(k, \mathbb{F}_p)$ a Koszul algebra?

 C^{\bullet} is quasi-isom as a dga to $(H^{\bullet}(C^{\bullet}), \delta = 0)$

Can $H^{\bullet}(k, \mathbb{F}_p)$ be described in "elementary terms"?

• Is $\mathscr{C}^{\bullet}(k, \mathbb{F}_p)$ a formal dg-algebra? • Can the dga $\mathscr{C}^{\bullet}(k, \mathbb{F}_p)$ be described in "elementary terms" as well?

Massey products provide an obstruction to formality

 many non-vanishing Massey products in arithm. & alg. geometry: Ekedahl, Morishita, Sharifi, Gärtner, Bleher-Chinburg-Gillibert, ...

• Hopkins and Wickelgren: $0 \in \langle a, b, c \rangle \iff \langle a, b, c \rangle \neq \emptyset$ k a local or global field of $char(k) \neq 2$ Massey vanishing conjecture of Mináč-Tân:

for every field k, all $n \ge 3$, all primes p

Conjecture: For $a_1, ..., a_n \in H^1(k, \mathbb{F}_p)$, $0 \in \langle a_1, ..., a_n \rangle \iff \langle a_1, ..., a_n \rangle \neq \emptyset$.

 known in many cases by the work of Efrat-Matzri, Mináč-Tân, Harpaz-Wittenberg, Merkurjev-Scavia, Pál-Szabó, Quadrelli,...

Hopkins-Wickelgren: For a field k and a prime p, is $\mathscr{C}^{\bullet}(k, \mathbb{F}_p)$ formal?

• The answer is no in general.

Counterexamples by Positselski,
Harpaz-Wittenberg, Merkurjev-Scavia

However, there are also positive cases...

Our main results:

every dga C^{\bullet} over \mathbb{F}_p with $H^{\bullet} \cong H^{\bullet}(G, \mathbb{F}_p)$ is formal

• Theorem (Pál-Q.): If G is a real projective profinite group, then $H^{\bullet}(G, \mathbb{F}_p)$ is intrinsically formal.

absolute Galois group $\Gamma(k)$ is real projective

G is real projective

k has virtual cohomological dimension ≤ 1

Haran-Jarden

k is pseudo real closed there is a PRC field k with $\Gamma(k) \cong G$

• Theorem (Pál-Q.): If k has virtual cohomological dimension ≤ 1 , then $H^{\bullet}(k, \mathbb{F}_p)$ is intrinsically formal and Koszul.

Hochschild vanishing theorem:connected sum of
quadratic algebrasScheidererconnected sum of
quadratic algebrasG a real projective group \implies $H^{\bullet}(G, \mathbb{F}_2) = A = B^{\bullet} \sqcap V^{\bullet}$
quadratic algebra with generators $V^i = 0$ for
in deg 1 are orthogonal $V^i = 0$ for
 $i \ge 2$

Theorem (Pál–Q.):
Such an algebra A is Koszul.

for p odd: $H^{i}(G, \mathbb{F}_{p}) = 0$ for $i \geq 2$ and intrinsic formality and Koszulity are easy

graded Hochschild cohomology

• Theorem (Pál-Q.): $HH^{n,2-n}(A,A) = 0$ for all $n \ge 3$.

contain the obstructions to define an A_{∞} -map $A \to \mathscr{C}^{\bullet}$ which lifts $A \xrightarrow{\cong} H^{\bullet}(\mathscr{C}^{\bullet})$

Kadeishvili: $\implies A$ is intrinsically formal

Thank you!