# Real projective groups are formal

MFO-RIMS Tandem Workshop 2023: Arithmetic Homotopy and Galois Theory 26 September 2023

> Gereon Quick NTNU

# This is joint work with Ambrus Pál

#### for simplicity Milnor-Bloch-Kato conjecture: k field with $char(k) \neq p$ containing primitive pth root of unity

#### Voevodsky, Rost, Merkurjev-Suslin

Milnor K-theory  $T(k^{\times})/(u \otimes (1-u), u \neq 0, 1)$ 

continuous cohomology of absolute Galois group

$$K^M_{\bullet}(k)/_p \xrightarrow{\cong} H^{\bullet}(k, \mathbb{F}_p)$$

#### quadratic algebra

- generators in degree 1
- relations in degree 2

strong restriction on which  $F_p$ -algebras can occur as the Galois cohomology of a field

Question: What other restrictions are there?

## Additional properties? $H^{\bullet}(k, \mathbb{F}_p)$ quadratic algebra A = T(V)/(R)

of vector space V  $\tau: T(V) \to A$ ,

 $R = \ker(\tau) \cap (V \otimes V)$ 

#### • Is $H^{\bullet}(k, \mathbb{F}_p)$ a Koszul algebra?

• A is Koszul if multiplication  $\mu: K(A) \rightarrow A$  is a quasi-isomorphism

• A is Koszul if  $\operatorname{Ext}_{A}^{ij}(\mathbb{F}_{p},\mathbb{F}_{p})=0$ for  $i \neq j$ 

Koszul complex: (K(A), d) $K_0^0(A) = \mathbb{F}_p \quad K_1^1(A) = V \quad K_2^2(A) = R$  $K_i^i(A) = \bigcap V^{\otimes j} \otimes R \otimes V^{\otimes i-j-2} \subset V^{\otimes i}, i \ge 3$  $0 \le j \le i - 2$ 

 $K_i(A) = A \otimes K_i^i(A) \otimes A$ 

 Conjecture of Positselski-Voevodsky:

If k contains a primitive pth root of unity, then  $H^{\bullet}(k, \mathbb{F}_p)$  is Koszul

• Positselski-Vishik:

Koszulity can be used for an alternative proof of the Milnor-Bloch-Kato conjecture

#### Additional properties? $H^{\bullet}(k, \mathbb{F}_p)$ quadratic algebra A = T(V)/(R)tensor algebra

of vector space V

 $\tau: T(V) \to A,$  $R = \ker(\tau) \cap (V \otimes V)$ 

• Is  $H^{\bullet}(k, \mathbb{F}_p)$  a Koszul algebra?

Positselski: local and global fields

Conjecture: If k contains a primitive pth root of unity, then  $H^{\bullet}(k, \mathbb{F}_p)$  is Koszul.

> more about PAC fields later

 Mináč-Panini-Quadrelli-Tân: finite fields, pseudo algebraically closed fields, Pythagorean fields for p = 2, ...

"Koszul algebras are very close to their cohomology"

• Is  $C^{\bullet}(k, \mathbb{F}_p)$ 

continuous cochains of absolute Galois group

a formal differential graded algebra?

 $(C^{\bullet}, \delta)$  is quasi-isomorphic as a dga to its cohomology  $(H^{\bullet}(C^{\bullet}), \delta = 0)$ 

## Additional properties? $H^{\bullet}(k, \mathbb{F}_p)$ quadratic algebra $A = \overline{T(V)/(R)}$ of vector space V $\tau: T(V) \to A$ ,

 $R = \ker(\tau) \cap (V \otimes V)$ 

## • Is $H^{\bullet}(k, \mathbb{F}_p)$ a Koszul algebra?

"Koszul algebras are very close to their cohomology"

## • Is $C^{\bullet}(k, \mathbb{F}_p)$ a formal dg-algebra?

Non-vanishing Massey products provide an obstruction to formality

 $(C^{\bullet}, \delta)$  a differential graded algebra Massey products: with cohomology  $H^{\bullet}$ a, b, c elements • A, B, C in  $C^1$  represent a, b, cin  $H^1$  with ab = 0 = bc•  $E_{ab}, E_{bc}$  with  $\delta E_{ab} = AB, \delta E_{bc} = BC$ choose triple Massey product is defined if such data exist set of elements in  $H^2$  $(a, b, c) := [AE_{bc} - E_{ab}C] \text{ in } H^2/(aH^1 + H^1c)$ • If  $\delta = 0$  then  $\langle a, b, c \rangle = 0$ • If  $f: C^{\bullet} \to D^{\bullet}$  quasi-isom then  $\langle a, b, c \rangle \xrightarrow{\text{bijection}} \langle f^{\bullet}a, f^{\bullet}b, f^{\bullet}c \rangle$ may choose  $E_{ab} = 0 = E_{bc}$ 

• Generalize to *n*-tuple Massey product  $\langle a_1, \ldots, a_n \rangle$  in all degrees

Massey product vanishing: •  $\langle a, b, c \rangle$  is defined if nonempty •  $\langle a, b, c \rangle$  vanishes if it contains 0

 Many non-vanishing Massey products in arithmetic: Morishita, Sharifi, Bleher-Chinburg-Gillibert, ...

Hopkins and Wickelgren:
local and global field

k with  $char(k) \neq 2$ 

Mináč and Tân: for every field k

triple Massey products vanish whenever they are defined

of elements in  $H^1(k, \mathbb{F}_2)$ 

Massey vanishing conjecture of Mináč–Tân: for every field k, all  $n \ge 3$ , all primes p

Conjecture: *n*-fold Massey products of elements in  $H^1(k, \mathbb{F}_p)$ vanish whenever they are defined

• Matzri, Efrat-Matzri, Mináč–Tân: all fields, all primes, (n = 3)

• Guillot-Mináč-Topaz-Wittenberg: all number fields, p = 2, n = 4)

• Harpaz-Wittenberg: all number fields, all primes, all  $n \ge 3$ 

• Pál-Szabó: fields with vcd  $\leq 1$  and ppc, all primes, all  $n \geq 3$ 

• Merkurjev-Scavia: all fields, p = 2, (n = 4)

more about  $vcd \le 1$  later

#### Hopkins-Wickelgren formality:

Massey vanishing conjecture and Koszulity suggest

Question: Is  $C^{\bullet}(k, \mathbb{F}_p)$  formal for all fields and all primes?

The answer is no in general

• Positselski: local fields of characteristic  $\neq p$  which contain a primitive pth root of unity may (not) be formal

• Harpaz-Wittenberg:  $\mathbb{Q}(\sqrt{2},\sqrt{17})$  is (not) formal

• Merkurjev-Scavia: fields of characteristic  $\neq 2$  have an extension which is (not) formal

However, there are also positive cases...

#### **PAC fields:** k a field with absolute Galois group $\Gamma(k)$

• k is called pseudo algebraically closed if every geometrically irreducible k-variety has a k-rational point

G is projective if every embedding problem has a solution

cohomological dimension at most 1



embedding problem

Ax, Lubotzky-van den Dries

k is pseudo algebraically closed there is a PAC field k with  $\Gamma(k) \cong G$   $\Gamma(k)$  is projective *G* is projective

#### Real projective groups:

G is real projective if it has an open subgroup without 2-torsion and every real embedding problem has a solution

• k a field with absolute Galois group  $\Gamma(k)$ 

 $\Gamma(k)$  is real projective

there exists an involution

### Haran-Jarden

k has virtual cohomological dimension at most one  $\leq 1$ 

G a profinite group real embedding problem for every involution solution  $\phi$ commutes В α  $\phi(t) \neq 1$ h k is pseudo  $\Gamma(k)$  is real real closed projective • every geometrically irreducible k-variety, which has a k-rational simple point in every real closure  $\overline{k}$ , has a k-rational point there is a PRC field kG is real

projective

with  $\Gamma(k) \cong G$ 

### Our main results (Pál-Q.):

Formality of  $C^{\bullet}(G, \mathbb{F}_p)$  for p odd follows from  $H^i(G, \mathbb{F}_p) = 0$  for  $i \ge 2$ 

#### even intrinsically formal

#### • If G is real projective, the dga $C^{\bullet}(G, \mathbb{F}_2)$ is formal

first case of fields with infinite cohomological dimension

• Fields with virtual coh. dimension  $\leq 1$  are formal and satisfy strong Massey vanishing for all primes

vanishing for products in all degrees

• If k has virtual coh. dimension  $\leq 1$ , then  $H^{\bullet}(k, \mathbb{F}_p)$  is Koszul

#### Scheiderer's theorem: G a real projective group

- $\mathscr{X}(G)$  = set of conjugacy classes of involutions
- $B = \operatorname{ring} \operatorname{of} \operatorname{continuous}$ functions  $\mathscr{X}(G) \to \mathbb{F}_2$

connected sum of quadratic algebras

•  $(B \sqcap V)^0 = \mathbb{F}_2$ •  $(B \sqcap V)^i = B^i \bigoplus V^i$ , and  $B^+ \cdot V^+ = 0 = V^+ \cdot B^+$ 

kernel of  $\pi^1: V^1 \subset H^{\bullet}(G, \mathbb{F}_2) \cong B^{\bullet} \sqcap V^{\bullet}$ 

**B**•

 $\pi^{\bullet}$ 

• surjective in all degrees, and isom in degrees  $\geq 2$ 

• *B* is a Boolean ring:  $x^2 = x$  for all *x* 

•  $B^{\bullet} = \bigoplus_{n \ge 0} B^n$ :  $B^0 = \mathbb{F}_2$ ,  $B^n = B$  for  $n \ge 1$  •  $V^0 = \mathbb{F}_2, V^{i \ge 2} = 0$ 

dual algebra

graded Boolean algebra

• **B**• is a Koszul algebra if locally finite, then  $B^{\bullet} = \mathbb{F}_2[x_1] \sqcap \ldots \sqcap \mathbb{F}_2[x_n]$ 

V° is a Koszul algebra
Koszul complex K(V°)
= bar resolution

connected sums and colimits preserve Koszulity

### Kadeishvili's theorem: F field A positively graded F-algebra with $A^0 = F$

graded Hochschild cohomology

## • Kadeishvili: If $HH^{n,2-n}(A,A) = 0$ for all $n \ge 3$ , then A is intrinsically formal

every dga with cohomology algebra equal A is formal

some tensor algebra



• apply with  $A = H^{\bullet}(G, \mathbb{F}_2)$ and get  $C^{\bullet}(G, \mathbb{F}_2)$  is formal

#### Hochschild vanishing theorem:

connected sum of graded Boolean algebra + dual algebra

 $A = B^{\bullet} \sqcap V^{\bullet}$ 

graded Hochschild cohomology

Theorem (Pál-Q.):  $HH^{n,2-n}(A,A) = 0$  for all  $n \ge 3$ 

Idea of proof:

• Step 1: prove assertion for all  $B' \subset B^{\circ}$  locally finite

• explicit combinatorial computation: every cocycle is a coboundary

Step 2: take colimit over all locally finite subalgebras

spectral sequence and show higher lim-terms vanish

Thank you!