Massey products and formality for real projective groups

Mittagsseminar zur Arithmetik Münster 20 May 2025

> Gereon Quick NTNU

This is joint work with Ambrus Pál

Norm Residue Theorem:

Voevodsky, Rost, ...

Milnor K-theory $T(k^{\times})/(u \otimes (1-u), u \neq 0, 1)$ for simplicity k field with char(k) $\neq p$ containing primitive pth root of unity

continuous cohomology of absolute Galois group

 $K^{M}_{\bullet}(k)/p \xrightarrow{\cong} H^{\bullet}(k, \mathbb{F}_{p})$

quadratic algebra

- generators in degree 1
- relations in degree 2

strong restriction on which \mathbb{F}_p -algebras can occur as the Galois cohomology of a field

Which quadratic algebras occur as $H^{\bullet}(k, \mathbb{F}_p)$?

Additional properties? $H^{\bullet}(k, \mathbb{F}_p)$ quadratic algebra • if inclusion $K(A) \hookrightarrow B(A)$ of Koszul complex into bar complex is a quasi-isom., or a quadratic algebra A is Koszul • if cohomology $\operatorname{Ext}_{A}^{\bullet}(\mathbb{F}_{p},\mathbb{F}_{p}) = A^{!}$ is Is $K^{M}_{\bullet}(k)/p$ Koszul? the quadratic dual If k contains a primitive pth root of Conjecture of Positselski-Vishik-Voevodsky: unity, then $H^{\bullet}(k, \mathbb{F}_p)$ is Koszul "The algebra $H^{\bullet}(k, \mathbb{F}_p)$

Positselski: local and global fields

has a very nice and simple structure."

• Mináč-Panini-Quadrelli-Tân: finite fields, pseudo algebraically closed fields, elementary type pro p-groups, Pythagorean fields if p = 2, ...

Additional properties? $H^{\bullet}(k, \mathbb{F}_p)$ quadratic algebra

• Is $H^{\bullet}(k, \mathbb{F}_p)$ a Koszul algebra?

• Can $H^{\bullet}(k, \mathbb{F}_p)$ be described in "elementary terms"?

 \mathscr{C}^{\bullet} is quasi-isom as a dga to $(H^{\bullet}(\mathscr{C}^{\bullet}), \delta = 0)$

continuous Galois cochains

• Is $\mathscr{C}^{\bullet}(k, \mathbb{F}_p)$ a formal dg-algebra? • Can the dga $\mathscr{C}^{\bullet}(k, \mathbb{F}_p)$ be described in "elementary terms" as well?

Massey products provide an obstruction to formality

Massey products: (\mathcal{C}, δ) a differential graded algebra with coh. H^{\bullet}

 $a, b, c \in H^1$ with ab = 0 = bc • $A, B, C \in \mathscr{C}^1$ represent a, b, c• E_{ab}, E_{bc} with $\delta E_{ab} = AB, \delta E_{bc} = BC$ make a choice

triple Massey productis defined if such data existset of elements in H^2 $\langle a, b, c \rangle := [AE_{bc} + E_{ab}C]$ in $H^2/(aH^1 + H^1c)$ • if $\delta = 0$ then $\langle a, b, c \rangle = 0$ • if $f: \mathcal{C}^\bullet \to \mathcal{D}^\bullet$ quasi-isom thenwe may choose $E_{ab} = 0 = E_{bc}$ $\langle a, b, c \rangle$

• generalizes to *n*-tuple Massey product $\langle a_1, ..., a_n \rangle$ in all degrees

 $a_1a_2 = \cdots = a_{n-1}a_n = 0$ only a necessary condition for $\langle a_1, \dots, a_n \rangle$ being defined

Additional properties? $H^{\bullet}(k, \mathbb{F}_p)$ quadratic algebra

 \mathscr{C}^{\bullet} is quasi-isom as a dga to $(H^{\bullet}(\mathscr{C}^{\bullet}), \delta = 0)$

• Is $\mathscr{C}^{\bullet}(k, \mathbb{F}_p)$ a formal dg-algebra?

• Can the dga $\mathscr{C}^{\bullet}(k, \mathbb{F}_p)$ be described in "elementary terms" as well?

Massey products provide an obstruction to formality many non-vanishing Massey
 products in arithm. & alg. geometry:
 Ekedahl, Morishita, Sharifi, Gärtner,
 Bleher-Chinburg-Gillibert, Deninger,...

• Hopkins and Wickelgren: $\langle a, b, c \rangle \neq \emptyset \iff 0 \in \langle a, b, c \rangle$ k a local or global field of elements in $H^1(k, \mathbb{F}_2)$ $\operatorname{char}(k) \neq 2$

Massey vanishing conjecture of Mináč-Tân:

for every field k, all $n \ge 3$, all primes p

Conjecture: For $a_1, ..., a_n \in H^1(k, \mathbb{F}_p)$: $\langle a_1, ..., a_n \rangle \neq \emptyset \iff 0 \in \langle a_1, ..., a_n \rangle.$

• Efrat-Matzri, Mináč-Tân: all fields, all primes, (n = 3)

Merkurjev-Scavia: all fields, p = 2, n = 4

 New examples of profinite groups which are not absolute Galois groups

• Example: S = free pro-p group on generators x_1, \dots, x_5 Mináč-Tân: and relation $r = [x_4, x_5][[x_2, x_3]x_1]$

Then $G = S/\langle r \rangle$ is not the maximal pro-p quotient of an absolute Galois group

Massey vanishing conjecture of Mináč-Tân: for every field k, all $n \ge 3$, all primes p Conjecture: For $a_1, ..., a_n \in H^1(k, \mathbb{F}_p)$: $\langle a_1, \dots, a_n \rangle \neq \emptyset \iff 0 \in \langle a_1, \dots, a_n \rangle.$ • Efrat-Matzri, Mináč-Tân: all fields, all primes, (n = 3)• Merkurjev-Scavia: all fields, p = 2, n = 4• Harpaz-Wittenberg: all number fields, all primes, all $n \ge 3$ and before Guillot-Mináč-Topaz-Wittenberg for p = 2, n = 4strong Massey vanishing conjecture • Pál-Szabó: fields with $vcd \leq 1$ all primes, $0 \in \langle a_1, \ldots, a_n \rangle$ • Quadrelli: elementary type all $n \geq 3$ $\iff a_i \cup a_{i+1} = 0$ pro-p-groups for all i = 1, ..., n - 1

Hopkins-Wickelgren formality:

Massey vanishing conjecture and Koszulity suggest

Question: Is $\mathscr{C}^{\bullet}(k, \mathbb{F}_p)$ formal?

Yes, for example, for pseudo-algebraically closed fields

The answer is no in general

• Positselski: \mathbb{Q}_{ℓ} for odd ℓ is not formal at p=2

Harpaz-Wittenberg: \mathbb{Q} is not formal for p=2

• exist $a, b, c, d \in H^1(\mathbb{Q}, \mathbb{F}_2)$

with $a \cup b = b \cup c = c \cup d = 0$

but $\langle a, b, c, d \rangle$ not defined

cochains which witness vanishing of cup products

a

 E_{ab}

b

 $E_{\langle a,b,c \rangle}$

 E_{bc}

С

 $E_{\langle b,c,d \rangle}$

 E_{cd}

d

for every field k and all primes p?

i.e., quasiisomorphic to $(H^{\bullet}(k, \mathbb{F}_p), \delta = 0)$ as dgas

• formality implies all Massey products are defined and vanish when neighbouring cup products are zero

cochains witnessing vanishing of Massey products

• $\langle a, b, c, d \rangle$ is defined if both $\langle a, b, c \rangle$ and $\langle b, c, d \rangle$ vanish with the same choice of E_{bc}

Hopkins-Wickelgren formality:

Massey vanishing conjecture and Koszulity suggest

Question: Is $\mathscr{C}^{\bullet}(k, \mathbb{F}_p)$ formal?

i.e., quasiisomorphic to $(H^{\bullet}(k, \mathbb{F}_p), \delta = 0)$ as dgas

for every field k and

all primes p?

Yes, for example, for pseudo-algebraically closed fields

The answer is no in general

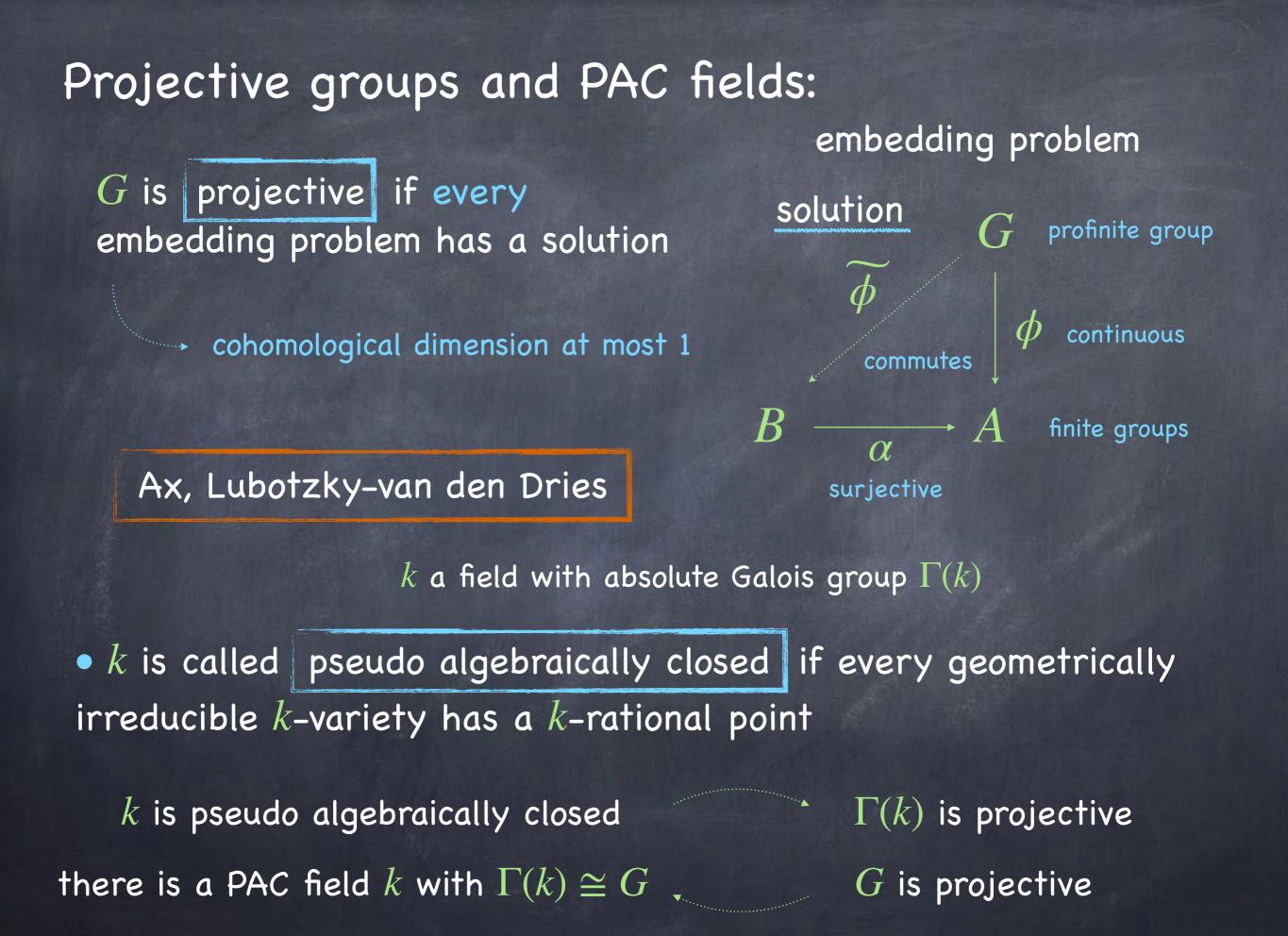
• Positselski: \mathbb{Q}_{ℓ} for odd ℓ is not formal at p=2

• Harpaz-Wittenberg: \mathbb{Q} is not formal for p=2

• Merkurjev-Scavia: more examples of fields of characteristic $\neq p$ which are not formal at p

• formality implies all Massey products are defined and vanish when neighbouring cup products are zero

However, there are also important positive cases...



Real projective groups:

G is real projective if it has an open subgroup without 2-torsion and every real embedding problem has a solution

Haran-Jarden

• k a field with absolute Galois group $\Gamma(k)$

k has virtual cohomological dimension at most one ≤ 1

there exists an involution b $\Gamma(k)$ is real

projective

k is pseudo

 $\phi(t) \neq 1$

G a profinite group

obstruction"

Ф

G

"involutions are no

t involution

real embedding problem

solution

commutes

 α

real closed

• every geometrically irreducible k-variety, which has a \bar{k} -rational simple point in every real closure \bar{k} , has a k-rational point

G is real projective

there is a PRC field k with $\Gamma(k)\cong G$

Our main results:

every dga \mathscr{C}^{\bullet} over \mathbb{F}_p with $H^{\bullet} \cong H^{\bullet}(G, \mathbb{F}_p)$ is formal

• Theorem (Pál-Q.): If G is a real projective profinite group, then $H^{\bullet}(G, \mathbb{F}_p)$ is intrinsically formal and Koszul.

k has virtual cohomological dimension ≤ 1

absolute Galois group $\Gamma(k)$ is real projective

Haran-Jarden

• Theorem (Pál-Q.): If k has virtual cohomological dimension ≤ 1 , then $H^{\bullet}(k, \mathbb{F}_p)$ is intrinsically formal and Koszul.

for p odd: $H^i(G, \mathbb{F}_p) = 0$ for $i \ge 2$ and intrinsic formality and Koszulity are easy

• $(B \sqcap D)^0 = \mathbb{F}_2 \quad \bullet \ (B \sqcap D)^i = B^i \oplus D^i$, Scheiderer's theorem: and $B^{+} \cdot D^{+} = 0 = D^{+} \cdot B^{+}$ connected sum of Scheiderer quadratic algebras \implies $H^{\bullet}(G, \mathbb{F}_2) = A = B^{\bullet} \sqcap D^{\bullet} \frown$ G a real projective group quadratic algebra with generators • $\mathscr{X}(G)$ = set of conjugacy $D^i = 0$ for classes of involutions in deg 1 are orthogonal $i \geq 2$ • B = ring of continuousgraded Boolean algebra functions $\mathscr{X}(G) \to \mathbb{F}_2$ dual algebra • $H^i(G, \mathbb{F}_2) \to B$ is surjective for $i \geq 1$ and iso for $i \ge 2$ with kernel $=: D^1$ for i = 1

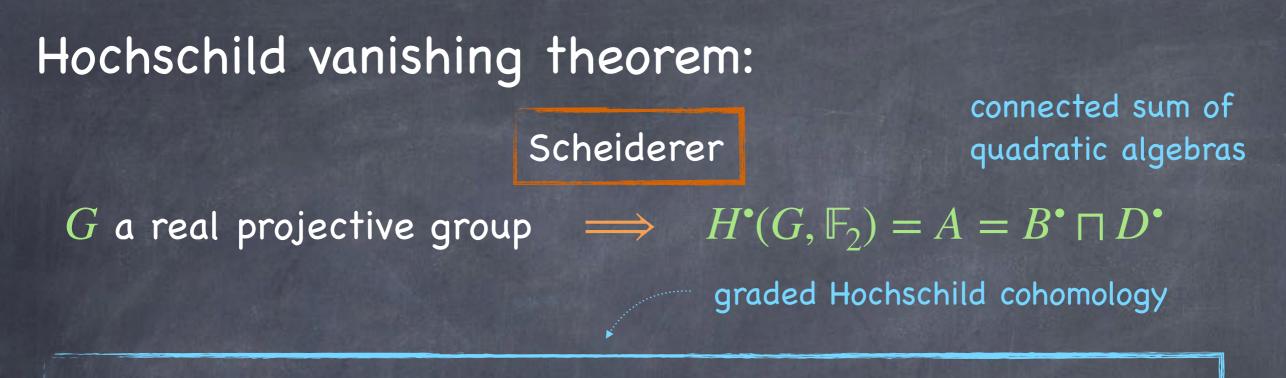
 Theorem (Pál-Q.): The connected sum of a graded Boolean algebra and a dual algebra is Koszul.

Proof:

D[•] is Koszul
 Koszul complex K(D[•])
 = bar resolution

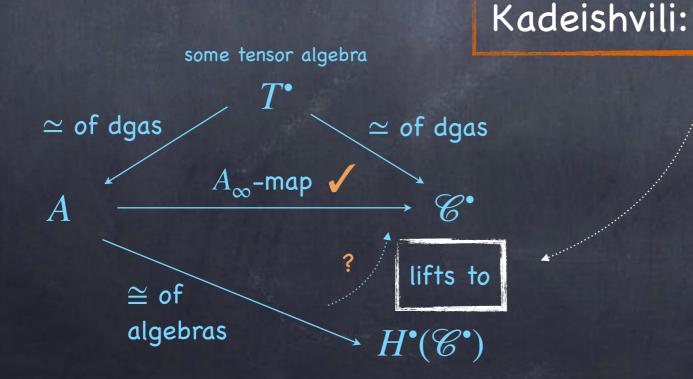
colimits and connected
 sums preserve Koszulity

• B^{\bullet} is Koszul if locally finite, then $B^{\bullet} \cong \mathbb{F}_2[x_1] \sqcap \ldots \sqcap \mathbb{F}_2[x_n]$



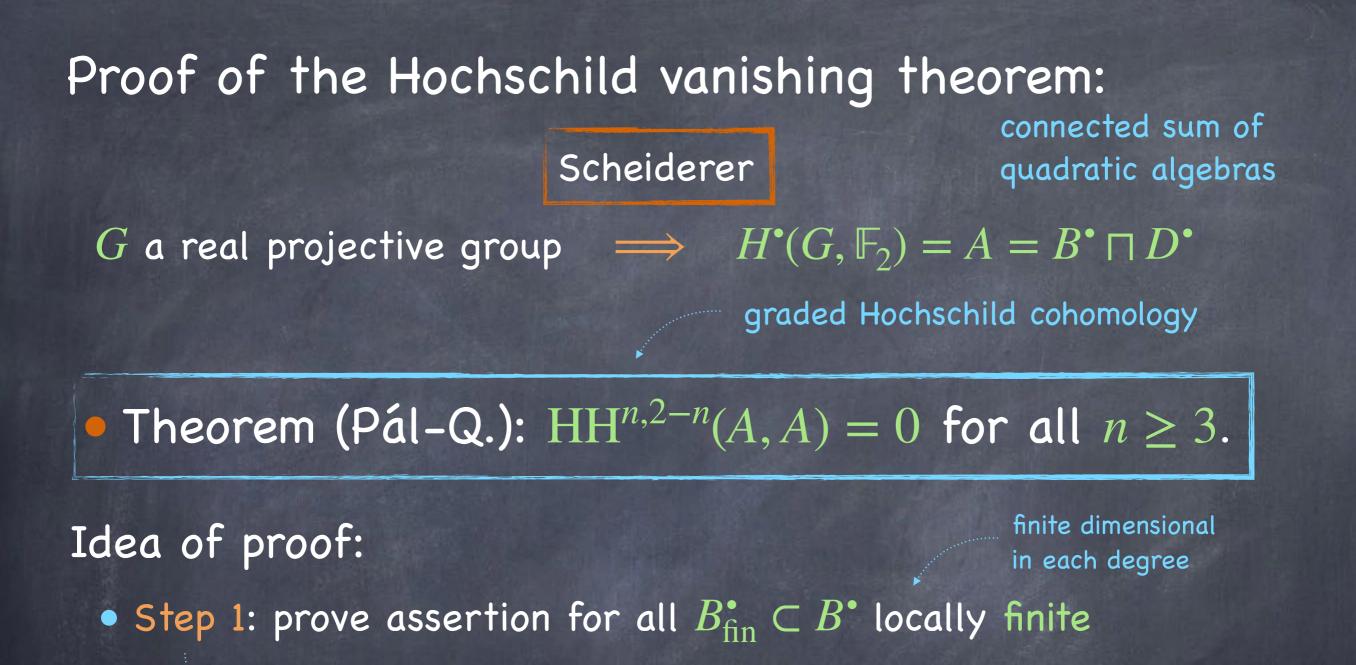
• Theorem (Pál-Q.): $HH^{n,2-n}(A,A) = 0$ for all $n \ge 3$.

contain the obstructions to define an A_{∞} -map $A \to \mathscr{C}^{\bullet}$ which lifts $A \xrightarrow{\cong} H^{\bullet}(\mathscr{C}^{\bullet})$



 $\implies A \text{ is intrinsically formal}$ i.e., every dga \mathscr{C}^{\bullet} over \mathbb{F}_2 with $H^{\bullet} \cong H^{\bullet}(G, \mathbb{F}_2)$ is formal

• apply with $A = H^{\bullet}(G, \mathbb{F}_2)$ and get $\mathscr{C}^{\bullet}(G, \mathbb{F}_2)$ is formal



explicit combinatorial computation: every cocycle is a coboundary

Step 2: take colimit over all locally finite subalgebras

spectral sequence and show higher lim-terms vanish

Reconstructing the group coalgebra

G a profinite group G(2) := maximal pro-2 quotient

assume

• $H^{\bullet} := H^{\bullet}(G, \mathbb{F}_2) \cong H^{\bullet}(G(2), \mathbb{F}_2)$ is Koszul and formal

Positselski

• can reconstruct the coalgebra $\mathbb{F}_2(G(2))$ from H^{ullet}

if G is real projective, we can improve this ...

Quasi-Boolean groups:

Theorem (Pál-Q.): Let G be a pro-2 group. Then Scheiderer G is real projective ↔ H[•](G, F₂) = B[•] ⊓ D[•] connected sum of a graded Boolean and a dual algebra

Principal construction:

- given $H^{\bullet}(G, \mathbb{F}_2) = B^{\bullet} \sqcap D^{\bullet}$
 - B¹ is a Boolean ring,
 i.e., x² = x for all x
 - set X = spectrum of B^1
 - set Y = basis of D^1

as a pro-2 group via generators and relations free pro-2 group

on set Y • then $G \cong F(Y) *_2 \mathbb{B}(X)$

is a free pro-2 product

"free pro-2 product of 2-groups over a topological space"

• this uses profinite versions of Quillen's F-isom theorems on group cohomology, work of Scheiderer, Haran-Jarden on the arithmetic of field, existence of sections of principal G-bundles (Morel), ... Thank you!