Algebraic vs topological classes

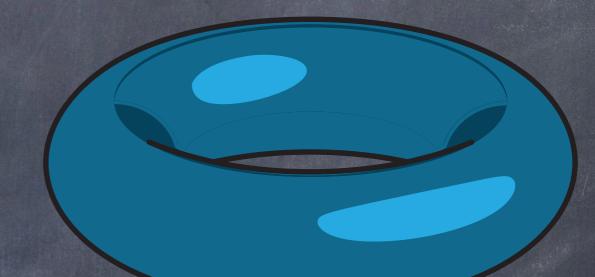
National Mathematicians Meeting in Bergen September 13, 2018

> Gereon Quick NTNU

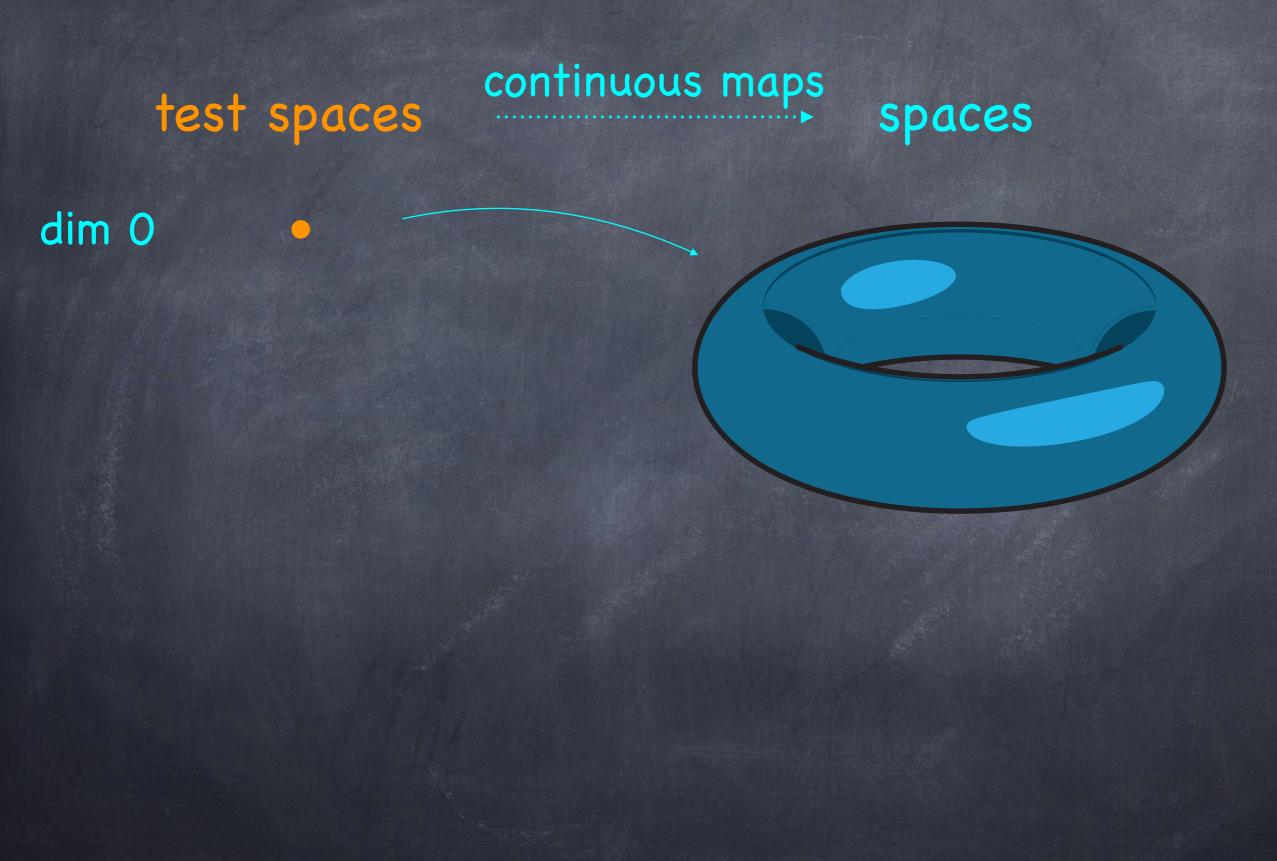
spaces

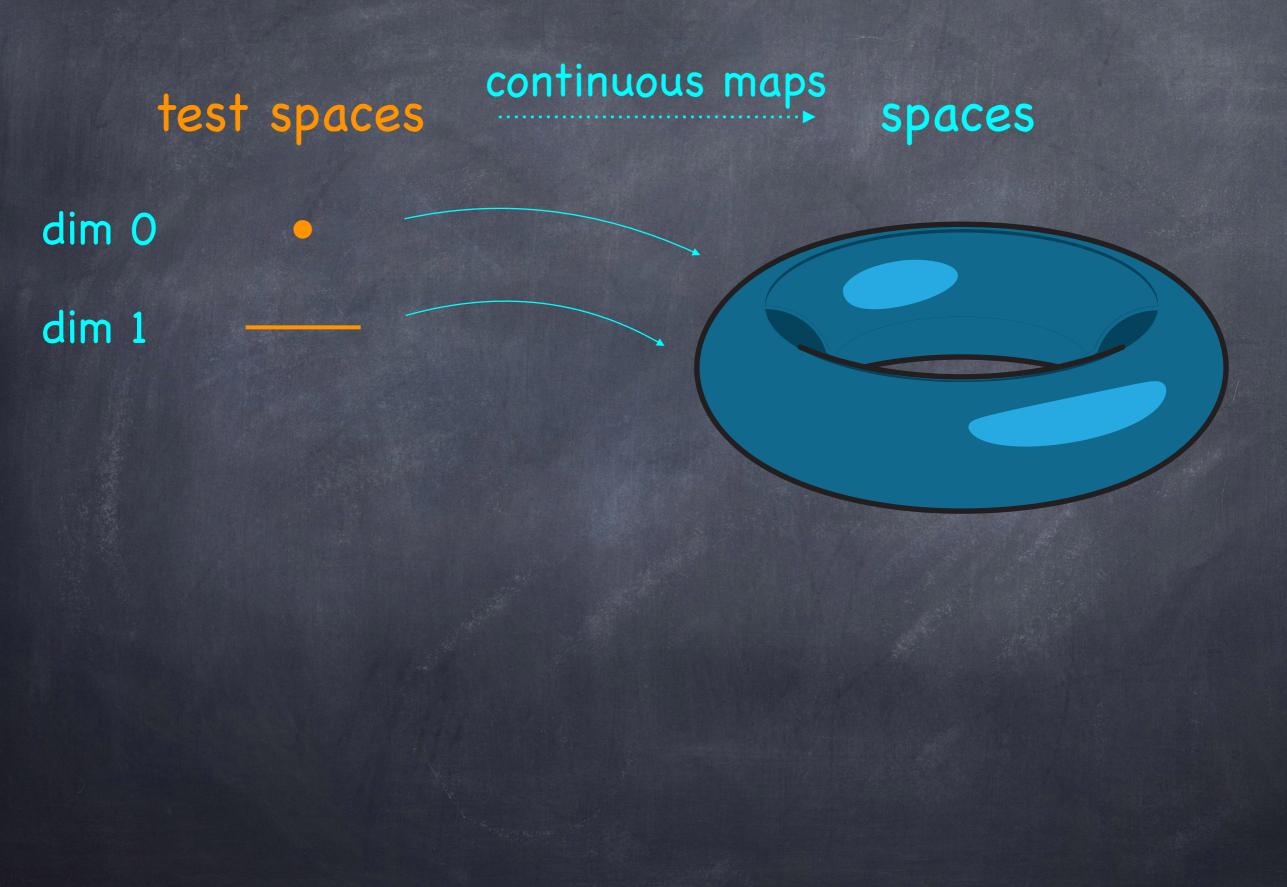
continuous maps

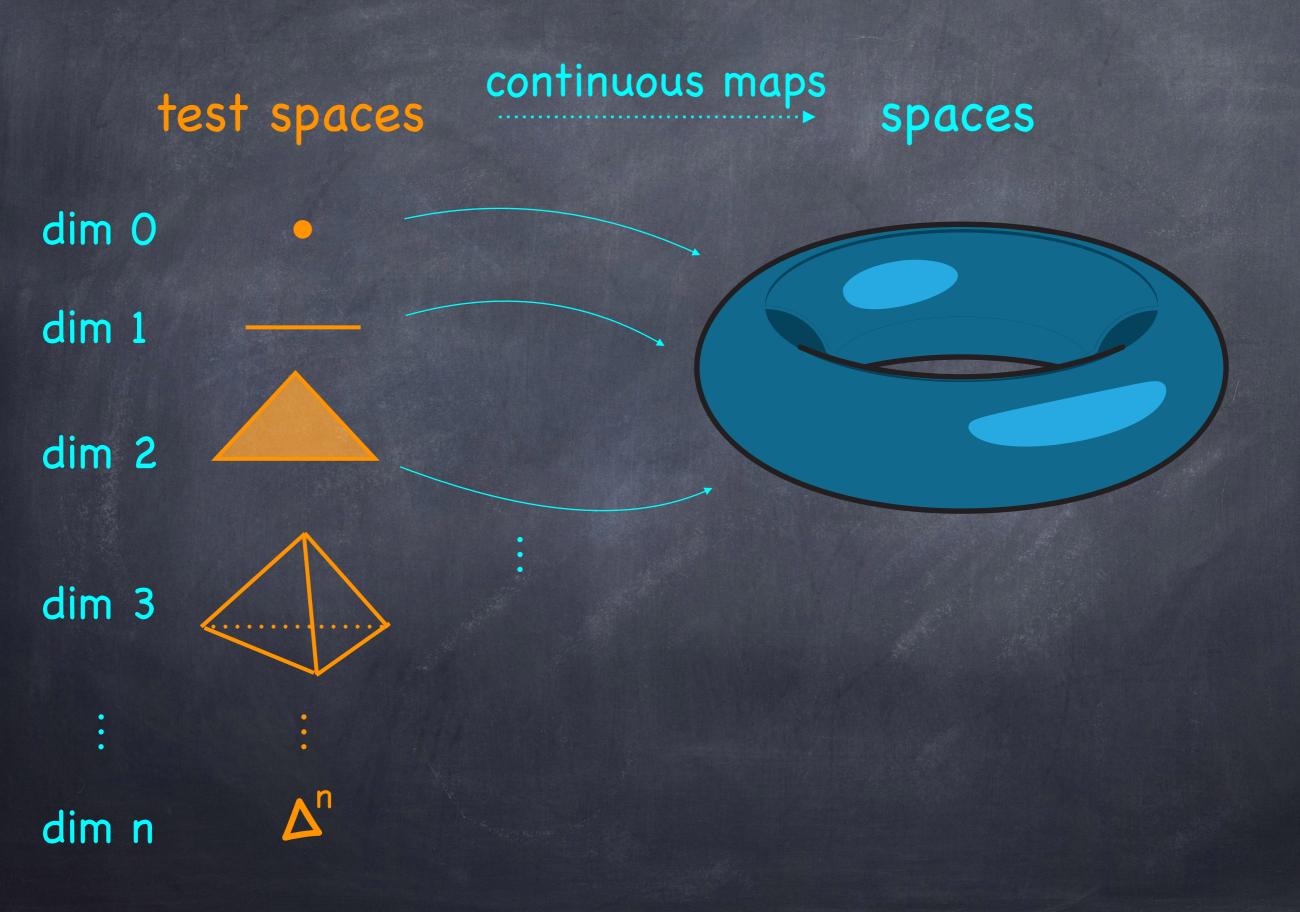
test spaces

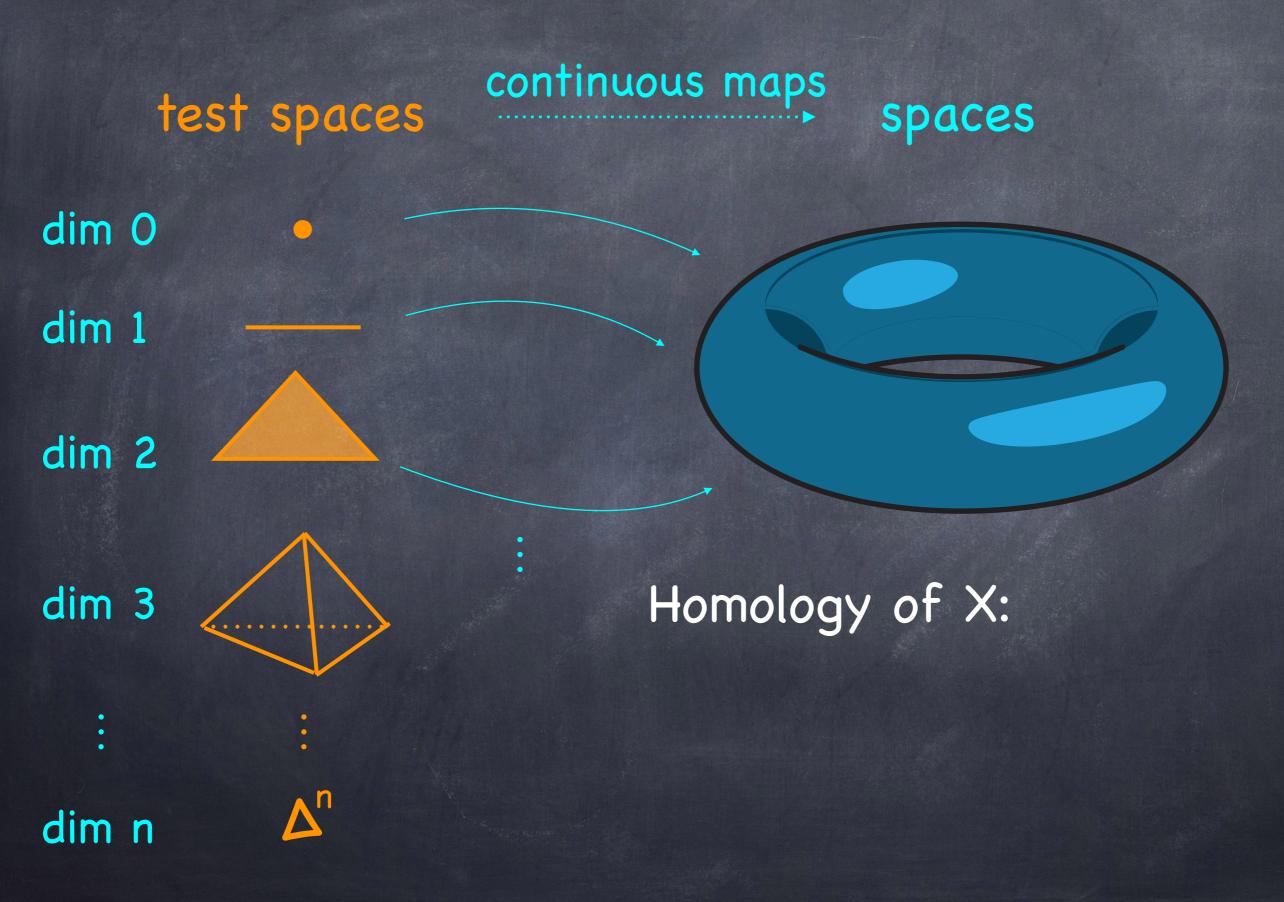


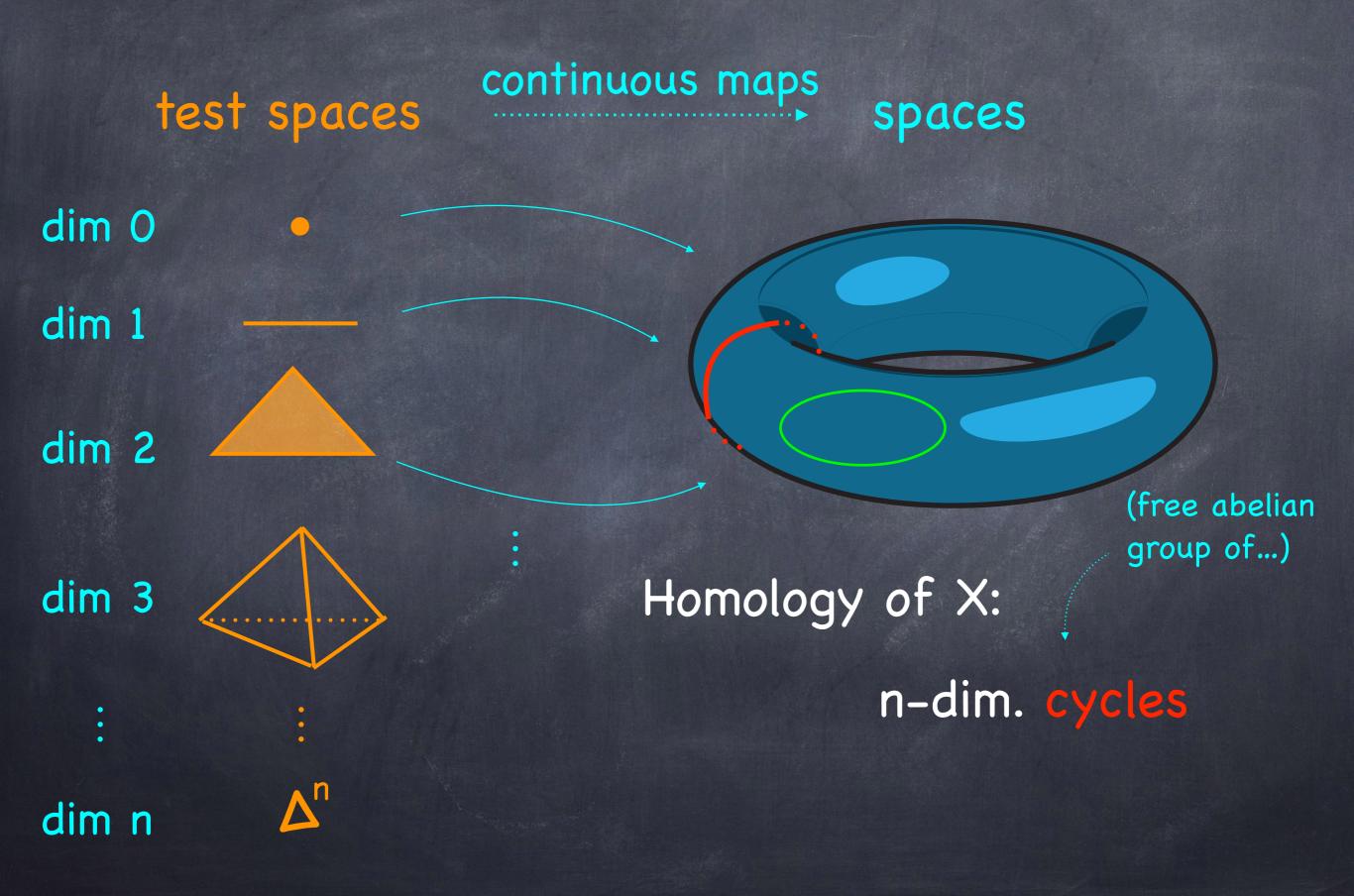
spaces

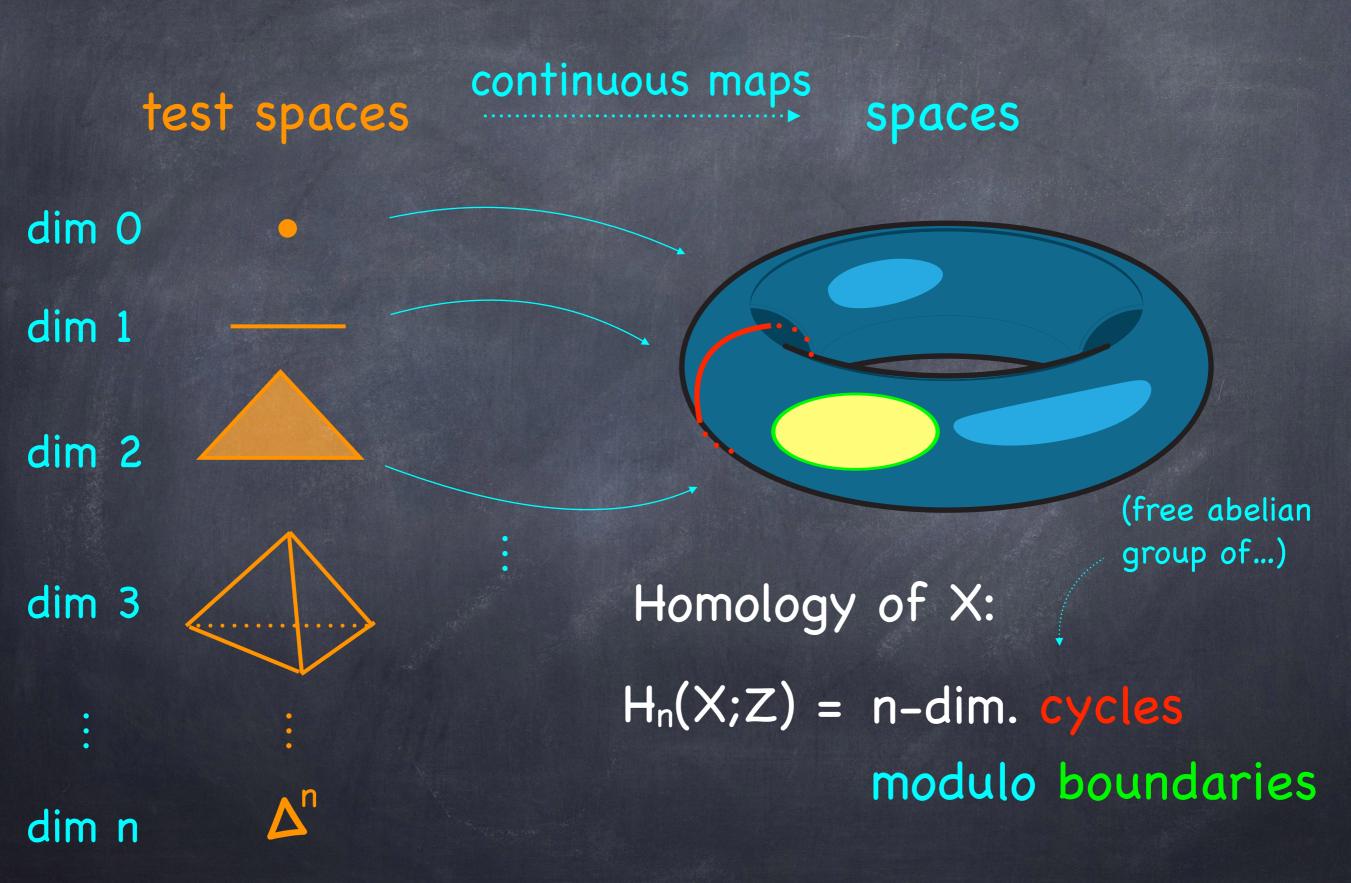








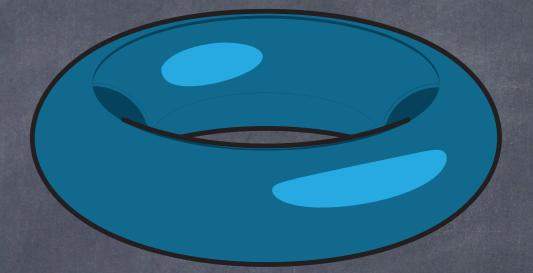


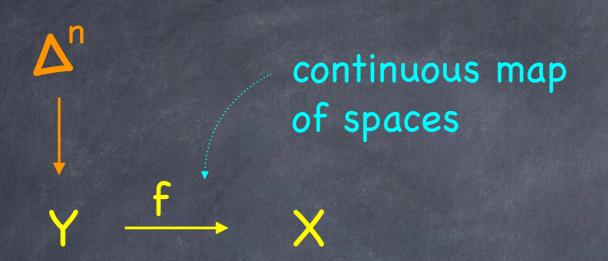


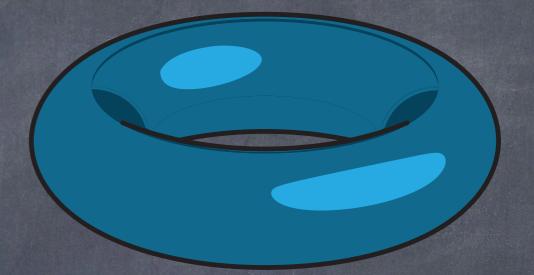
C

continuous map of spaces

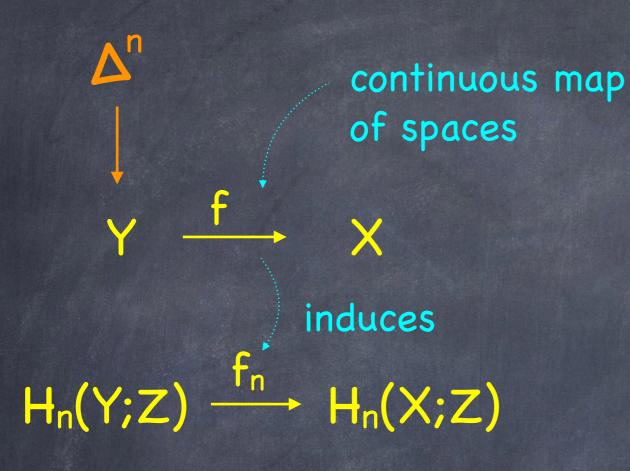
X

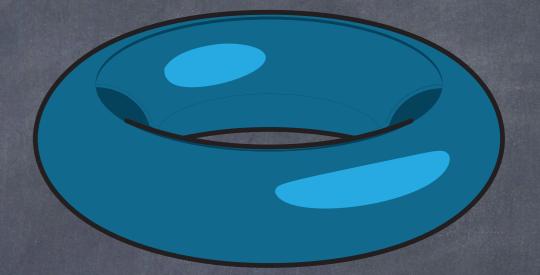


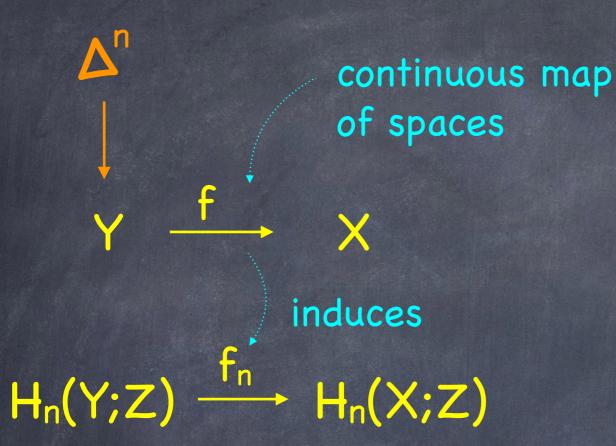


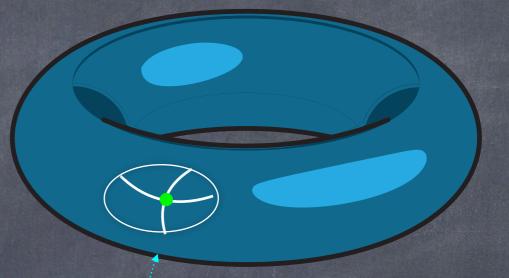


H_n(Y;Z)



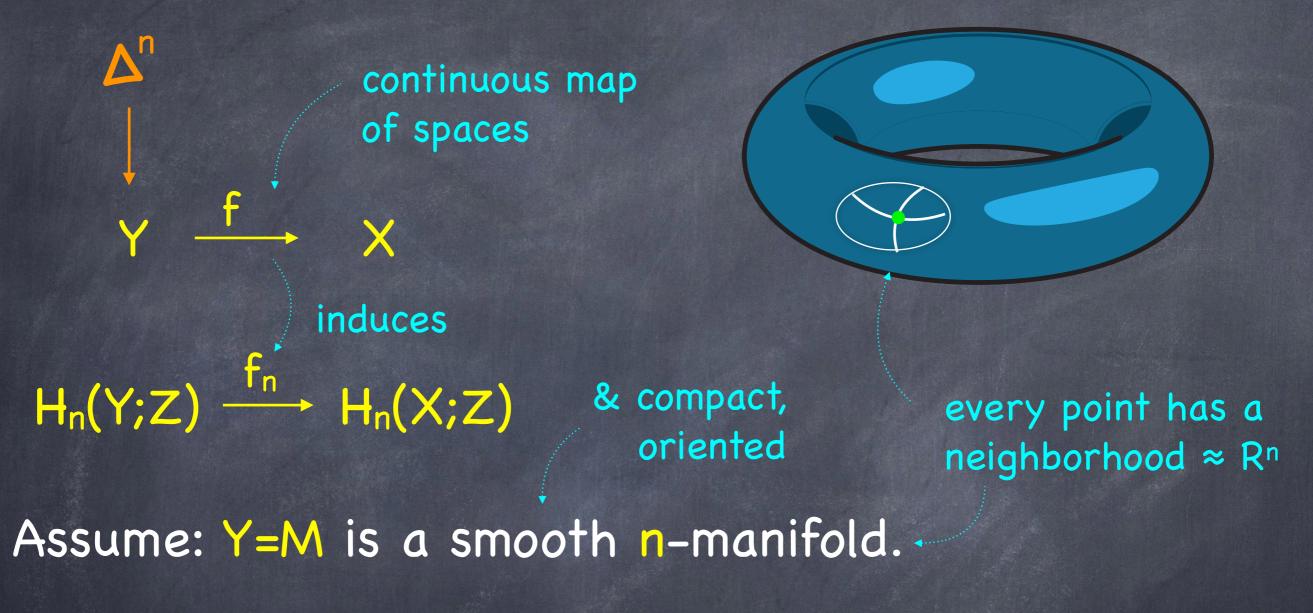


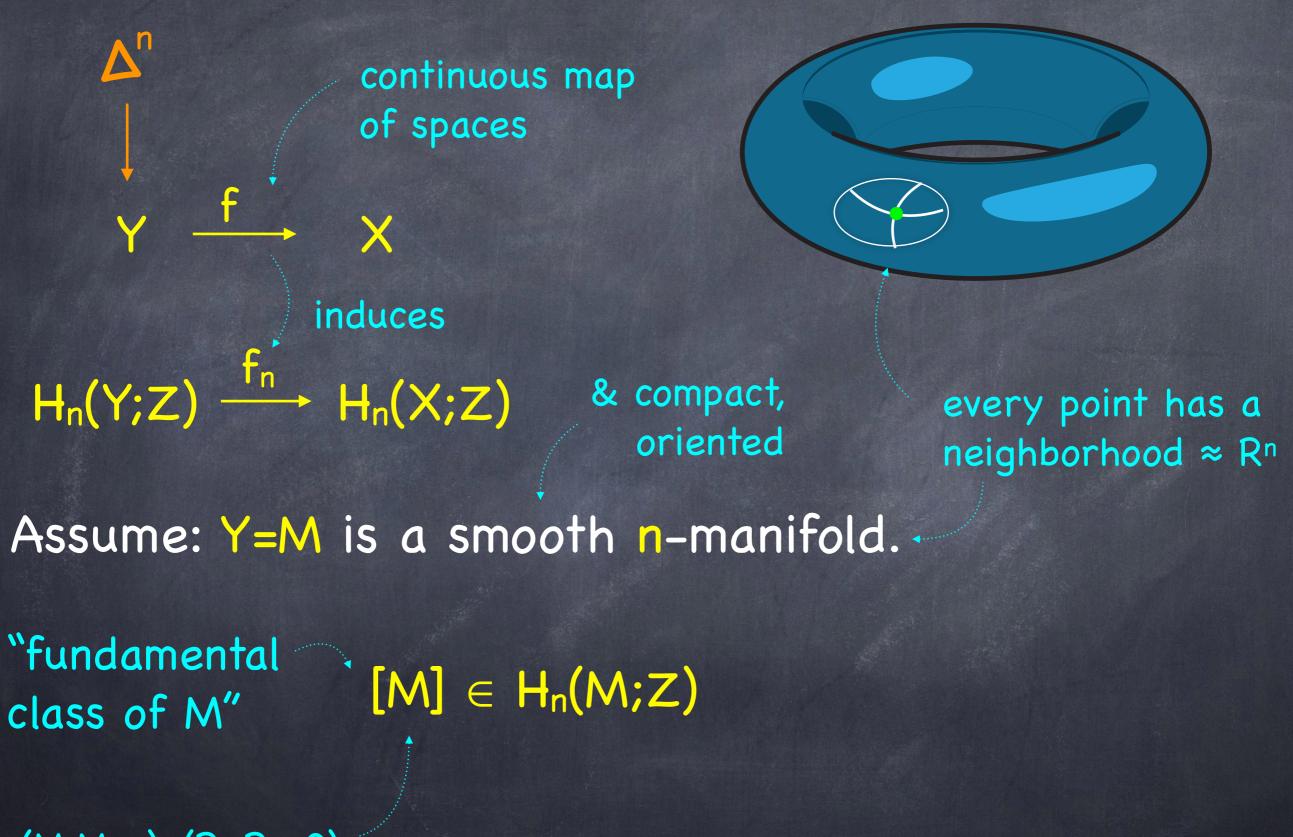




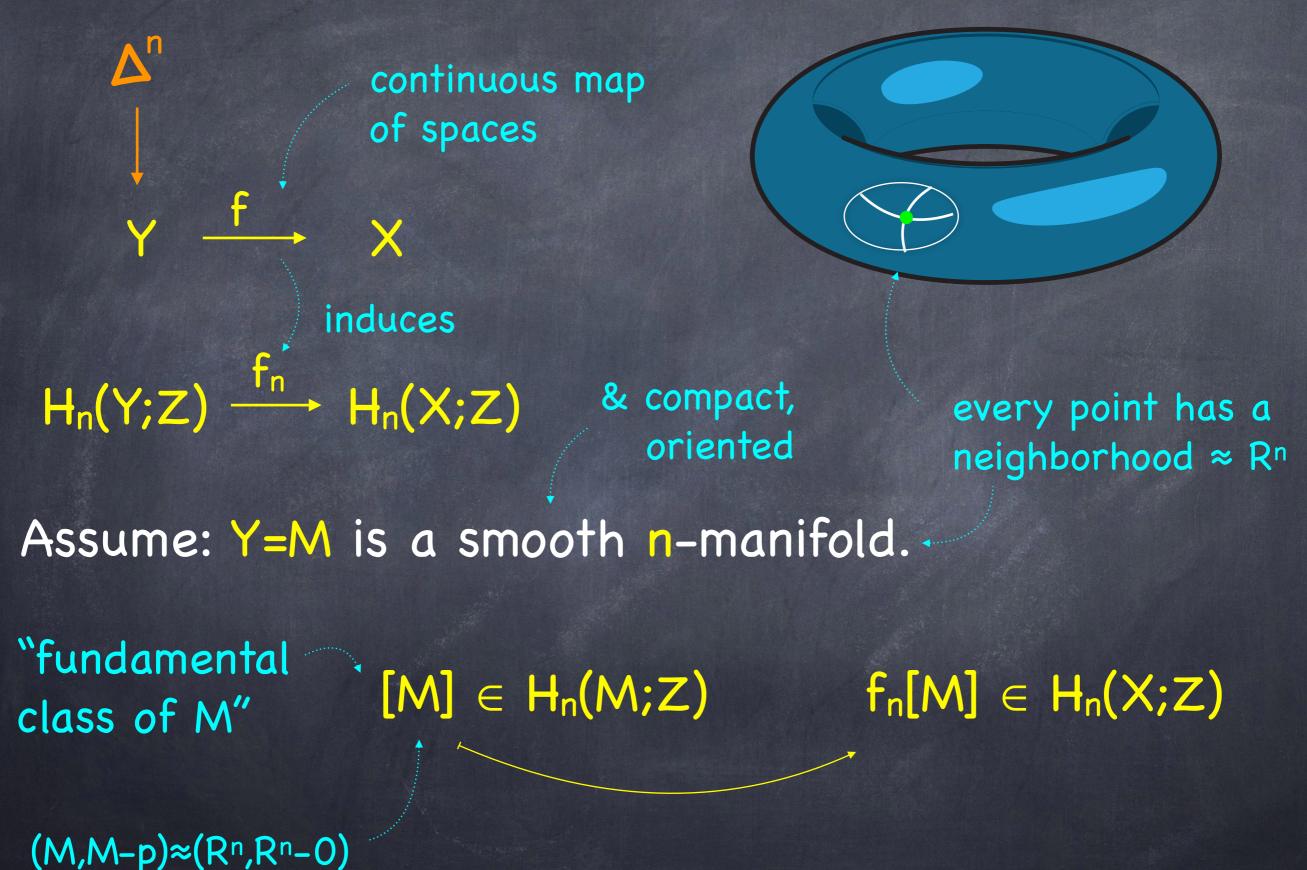
every point has a neighborhood ≈ Rⁿ

Assume: Y=M is a smooth n-manifold.





(M,M-p)≈(Rⁿ,Rⁿ-0)



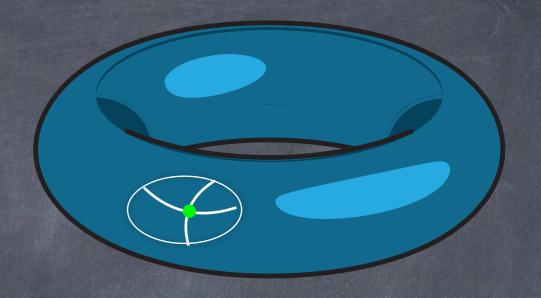
Steenrod's question:

Can every class in $H_n(X;Z)$ be realized as the fundamental class of a smooth n-manifold $M \rightarrow X$?

& compact, oriented

Steenrod's question: Can every class in $H_n(X;Z)$ be realized as the fundamental class of a smooth n-manifold $M \rightarrow X$?

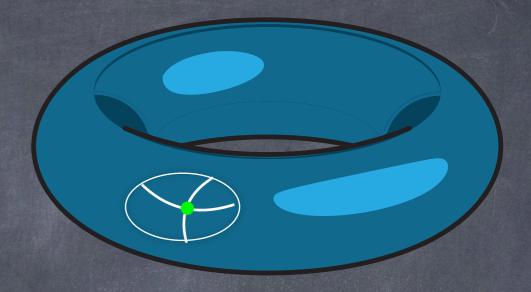
> & compact, oriented



 $\alpha \in H_n(X;Z)$

Steenrod's question: Can every class in $H_n(X;Z)$ be realized as the fundamental class of a smooth n-manifold $M \rightarrow X$?

oriented



exist manifold ? M ? $f_n[M] \stackrel{?}{=} \alpha \in H_n(X;Z) \downarrow^f$ X Steenrod's question: Can every class in $H_n(X;Z)$ be realized as the fundamental class of a smooth n-manifold $M \rightarrow X$? & compact,

exist manifold ? M ? $f_n[M] \stackrel{?}{=} \alpha \in H_n(X;Z) \downarrow^f$ X

Example: Every elt in $H_1(X;Z)$ is realized as $S^1 \rightarrow X$.

oriented

Steenrod's question: Can every class in $H_n(X;Z)$ be realized as the fundamental class of a exist manifold ? M smooth n-manifold $M \rightarrow X$? $f_n[M] \stackrel{?}{=} \alpha \in H_n(X;Z) \downarrow f$ & compact, oriented Example: Every elt in $H_1(X;Z)$ is realized as $S^1 \rightarrow X$.

Thom's answer: In general, no!

Steenrod's question: Can every class in $H_n(X;Z)$ be realized as the fundamental class of a exist manifold ? M smooth n-manifold $M \rightarrow X$? $f_n[M] \stackrel{?}{=} \alpha \in H_n(X;Z) \downarrow f$ & compact, oriented Example: Every elt in $H_1(X;Z)$ is realized as $S^1 \rightarrow X$. Thom's answer: In general, no! because manifolds obey some universal geometric operations and α may not!

Steenrod's question: Can every class in $H_n(X;Z)$ be realized as the fundamental class of a exist manifold ? M smooth n-manifold $M \rightarrow X$? $f_n[M] \stackrel{?}{=} \alpha \in H_n(X;Z) \downarrow f$ & compact, oriented Example: Every elt in $H_1(X;Z)$ is realized as $S^1 \rightarrow X$. Thom's answer: In general, no! With rational coefficients: Yes! because manifolds obey some universal geometric operations and α may not!

• choose a nice X

• choose a nice X

complex smooth algebraic variety X

set of solutions in some C^N
 of polynomial equations

• choose a nice X

complex smooth algebraic variety X

set of solutions in some C^N of polynomial equations

Examples:

• choose a nice X

complex smooth algebraic variety X set of solutions in some C^N of polynomial equations

Examples:

• p(x,y,z) = 0 in C³ for $p(x,y,z) = x^n+y^n+z^n-1$.

• choose a nice X

complex smooth algebraic variety X

set of solutions in some C^N of polynomial equations

Examples:

• p(x,y,z) = 0 in C^3 for $p(x,y,z) = x^n+y^n+z^n-1$.

• $y^n-q(x) = 0$ in C^2 , q without multiple roots, e.g. $q(x)=x^3+x+1$.

Abelian integrals $\int \frac{p(x)}{n/a(x)} dx$

• choose a nice X

complex smooth algebraic variety X

choose a nice X
 projective

complex projective space

complex smooth algebraic variety $X \subset CP^N$

choose a nice X
 projective

complex projective space

complex smooth algebraic variety $X \subset CP^N$

 consider an algebraic subset V ⊂ X
 satisfy additional polynomial equations

choose a nice X
 projective

complex projective space

complex smooth algebraic variety $X \subset CP^N$

consider an algebraic subset V ⊂ X
 satisfy additional polynomial equations
 if V smooth fundamental class of V → [V] ∈ H_{2n}(V;Z)

choose a nice X
 projective

complex projective space

complex smooth algebraic variety $X \subset CP^N$

• consider an algebraic subset $V \subset X$ satisfy additional polynomial equations if V smooth fundamental class of V $[V] \in H_{2n}(V;Z)$ $j_{2n}[V] \in H_{2n}(X;Z)$

A new question:

$X \subset CP^N$ smooth proj. algebraic

A new question:

$X \subset CP^N$ smooth proj. algebraic

Can every class in $H_{2n}(X;Z)$ be realized as the fundamental class of an algebraic subset VCX?

Can every class in $H_{2n}(X;Z)$ be desingularization realized as the fundamental class of an $V \leftarrow V_{sm}$ $[V]=[V_{sm}]$ algebraic subset $V \subset X$?

Can every class in $H_{2n}(X;Z)$ be desingularization realized as the fundamental class of an $V \leftarrow V_{sm}$ $[V]=[V_{sm}]$ algebraic subset $V \subset X$?

• Example:

Can every class in $H_{2n}(X;Z)$ be desingularization realized as the fundamental class of an $V - V_{sm}$ $[V]=[V_{sm}]$ algebraic subset $V \subset X$?

• Example:

curve

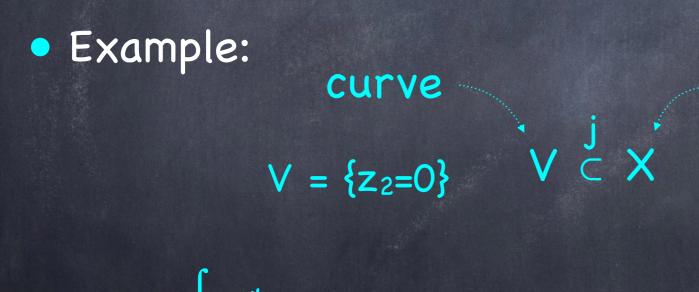
surface

Can every class in $H_{2n}(X;Z)$ be desingularization realized as the fundamental class of an algebraic subset VCX? desingularization $V \leftarrow V_{sm}$ [V]=[V_{sm}] in $H_{2n}(X;Z)$

• Example: curve $V = \{z_2=0\}$ $V \subset X$

surface z1,z2 local coordinates on X

Can every class in $H_{2n}(X;Z)$ be desingularization realized as the fundamental class of an algebraic subset VCX? desingularization $V - V_{sm}$ [V]=[V_{sm}] in $H_{2n}(X;Z)$



surface z1,z2 local coordinates on X

Can every class in $H_{2n}(X;Z)$ be desingularization realized as the fundamental class of an algebraic subset VCX? desingularization $V - V_{sm}$ [V]=[V_{sm}] in $H_{2n}(X;Z)$

• Example: curve $v = \{z_2=0\}$ $\int \int_{V} \int_{V} \frac{j^* \alpha}{k}$ form on X

surface z_{1}, z_{2} local coordinates on X $\alpha = \Sigma g dz_{1} \wedge dz_{2}$ $\alpha = \Sigma f dz_{1} \wedge d\overline{z}_{1}$ $\alpha = \Sigma h d\overline{z}_{1} \wedge d\overline{z}_{2}$

Can every class in $H_{2n}(X;Z)$ be desingularization realized as the fundamental class of an algebraic subset VCX? desingularization $V - V_{sm}$ [V]=[V_{sm}] in $H_{2n}(X;Z)$

Can every class in $H_{2n}(X;Z)$ be desingularization realized as the fundamental class of an algebraic subset VCX? desingularization $V - V_{sm}$ [V]=[V_{sm}] in $H_{2n}(X;Z)$

• Example: curve $y = \{z_2=0\}$ $V \subset X$ $a = -\sum g dz_1 \wedge dz_2$ (Hodge) $\int_{V} j^* \alpha = 0$ unless $\alpha = \sum f dz_1 \wedge d\overline{z}_1$ $\alpha = -\sum h d\overline{z}_1 \wedge d\overline{z}_2$

$X \subset CP^N$ smooth proj. algebraic

$X \subset CP^N$ smooth proj. algebraic

Can every class in $H_{2n}(X;Z)$ of Hodge type be realized as the fundamental class of an algebraic subset $V \subset X$?

$X \subset CP^N$ smooth proj. algebraic

Can every class in $H_{2n}(X;Z)$ of Hodge type be realized as the fundamental class of an algebraic subset VCX?

Atiyah-Hirzebruch: In general, no!

XCCPN smooth proj. algebraic

Can every class in $H_{2n}(X;Z)$ of Hodge type be realized as the fundamental class of an algebraic subset VCX?

With rational coefficients this is still an open question!

Atiyah-Hirzebruch: In general, no!

XCCPN smooth proj. algebraic

Can every class in $H_{2n}(X;Z)$ of Hodge type be realized as the fundamental class of an algebraic subset VCX?

With rational coefficients this is still an open question!

Atiyah-Hirzebruch: In general, no!

• However, for n = dim X - 1, the answer is yes.

XCCPN smooth proj. algebraic

Can every class in $H_{2n}(X;Z)$ of Hodge type be realized as the fundamental class of an algebraic subset VCX?

With rational coefficients this is still an open question!

Atiyah-Hirzebruch: In general, no!

• However, for n = dim X - 1, the answer is yes.

given α in H_{2d-2}(X;Z)

XCCPN smooth proj. algebraic

Can every class in $H_{2n}(X;Z)$ of Hodge type be realized as the fundamental class of an algebraic subset VCX?

With rational coefficients this is still an open question!

Atiyah-Hirzebruch: In general, no!

• However, for n = dim X - 1, the answer is yes.

given α in H_{2d-2}(X;Z) Poincaré dual α_{PD} in H²(X;Z)

XCCPN smooth proj. algebraic

Can every class in $H_{2n}(X;Z)$ of Hodge type be realized as the fundamental class of an algebraic subset VCX?

With rational coefficients this is still an open question!

K(2;Z)

Atiyah-Hirzebruch: In general, no!

• However, for n = dim X - 1, the answer is yes.

XCCPN smooth proj. algebraic

Can every class in $H_{2n}(X;Z)$ of Hodge type be realized as the fundamental class of an algebraic subset VCX?

With rational coefficients this is still an open question!

CP^k ⊂

K(2;Z)

Atiyah-Hirzebruch: In general, no!

• However, for n = dim X - 1, the answer is yes.

XCCPN smooth proj. algebraic

Can every class in $H_{2n}(X;Z)$ of Hodge type be realized as the fundamental class of an algebraic subset VCX?

With rational coefficients this is still an open question!

CP^{k-1}

K(2;Z)

Atiyah-Hirzebruch: In general, no!

• However, for n = dim X - 1, the answer is yes.

XCCPN smooth proj. algebraic

CP

pullback

Can every class in $H_{2n}(X;Z)$ of Hodge type be realized as the fundamental class of an algebraic subset VCX?

With rational coefficients this is still an open question!

K(2;Z)

Atiyah-Hirzebruch: In general, no!

• However, for n = dim X - 1, the answer is yes.

Atiyah-Hirzebruch-Totaro obstruction:

given algebraic VCX

Atiyah-Hirzebruch-Totaro obstruction:

given algebraic $V \subset X \longrightarrow [V]_H \in H_{2n}(X;Z)$

> fundamental class of V_{sm}

Atiyah-Hirzebruch-Totaro obstruction:

 $\begin{array}{c} \text{K-theory}\\ \text{fundamental}\\ \text{class} & [V]_{K} \in K_{2n}(X) \\ & \text{Atiyah-}\\ & \text{Hirzebruch} & \downarrow \\ & \text{algebraic V}_{\subset}X & & & [V]_{H} \in H_{2n}(X;Z) \\ & \text{fundamental} \end{array}$

class of V_{sm}

Atiyah-Hirzebruch-Totaro obstruction: Thom/Quillen: universal [V]_{MU} ∈ MU_{2n}(X) fundamental class

 $\begin{array}{c} \text{K-theory} \\ \text{fundamental} \\ \text{class} & [V]_{K} \in K_{2n}(X) \\ \text{Atiyah-} \\ \text{Hirzebruch} & \downarrow \\ \text{algebraic V} \subset X & \qquad [V]_{H} \in H_{2n}(X;Z) \end{array}$

fundamental class of V_{sm}

generators M Atiyah-Hirzebruch-Totaro obstruction: are manifolds Thom/Quillen: $[V]_{MU} \in MU_{2n}(X)$ universal fundamental class K-theory fundamental class $[V]_{K} \in K_{2n}(X)$ Atiyahgiven Hirzebruch \rightarrow [V]_H \in H_{2n}(X;Z) algebraic VCX fundamental class of V_{sm}

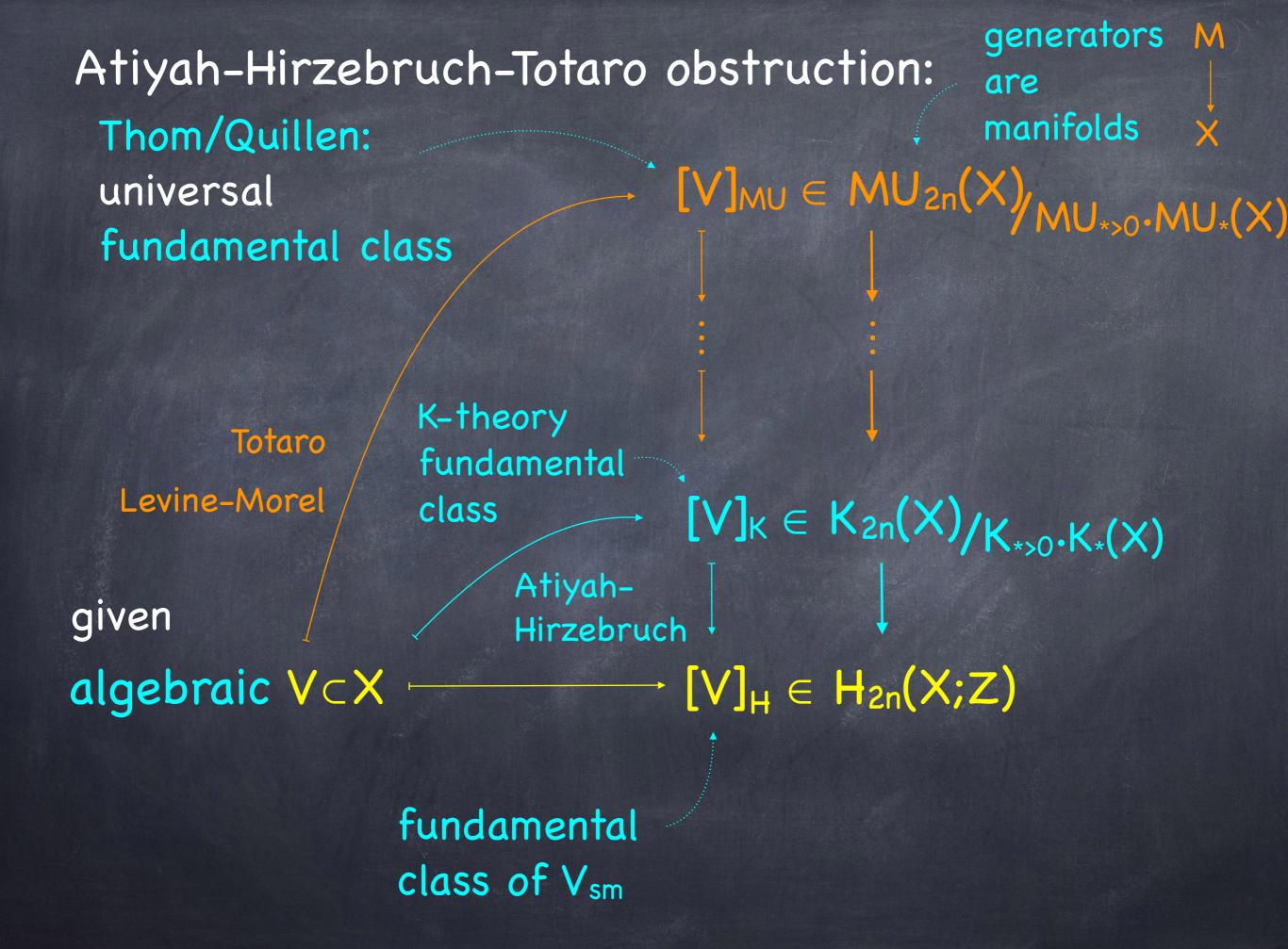
Atiyah-Hirzebruch-Totaro obstruction: Thom/Quillen: universal fundamental class generators Mmanifolds X

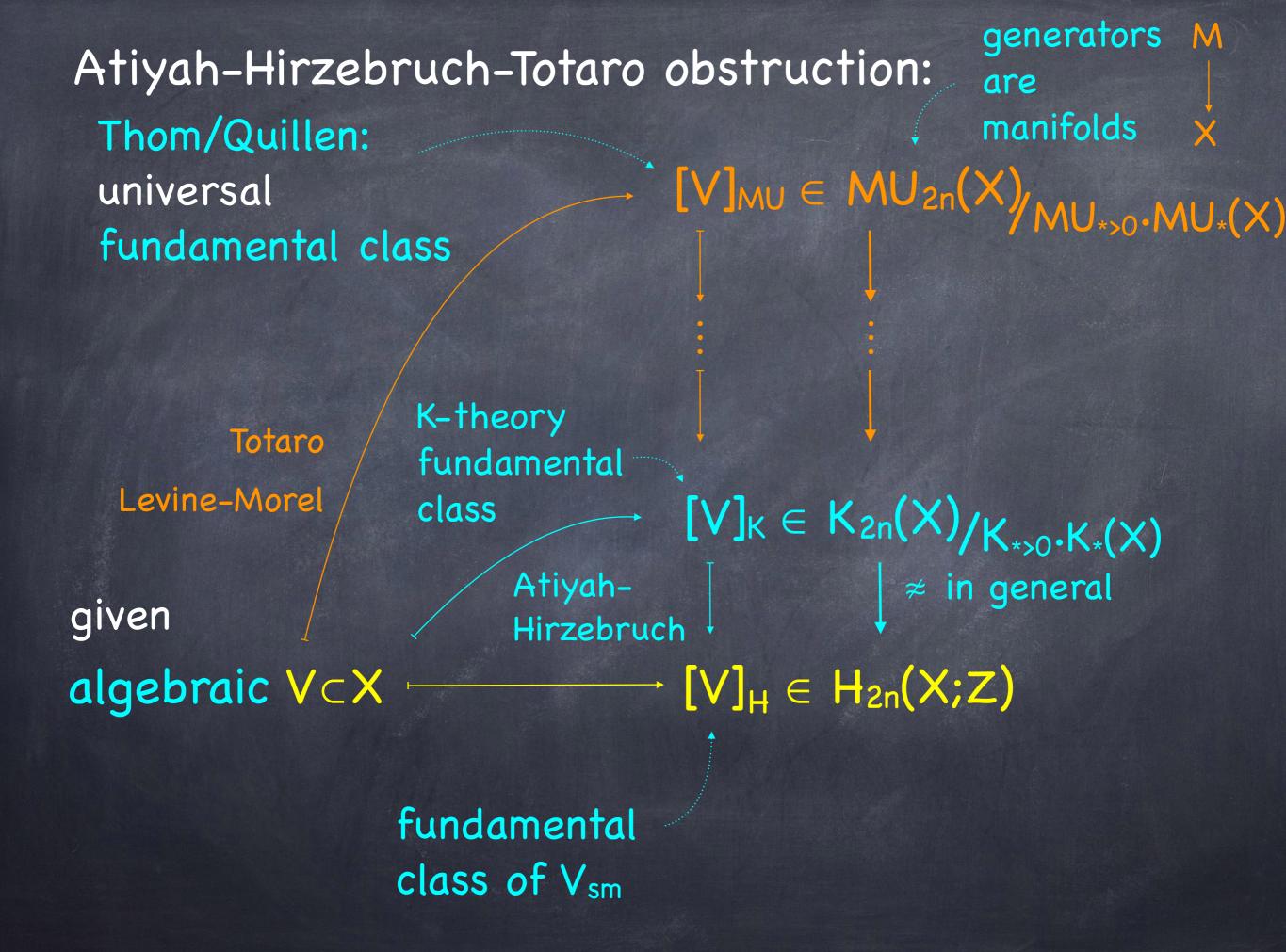
Totaro Levine-Morel given

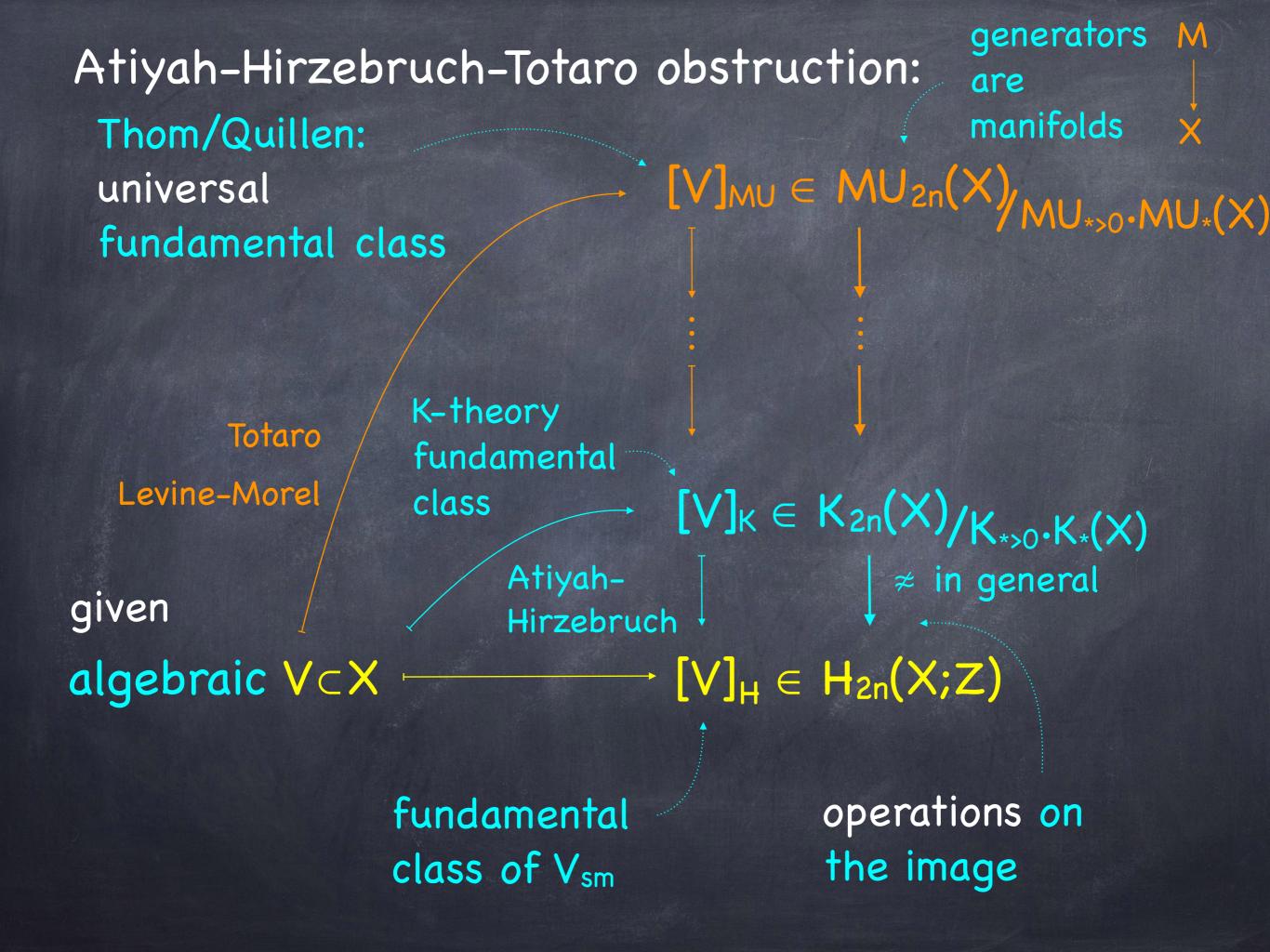
algebraic VCX

K-theory fundamental class $[V]_{K} \in K_{2n}(X)$ Atiyah-Hirzebruch \downarrow $(V]_{H} \in H_{2n}(X;Z)$

fundamental class of V_{sm}







The Brown-Peterson tower: p-local universal theory Brown-Peterson spectra BP with $BP_{k} = Z_{(p)}[v_{1},v_{2},...]$. $|v_{i}|=2(p^{i}-1)$ evaluation on point $|v_{i}|=2(p^{i}-1)$ $|v_{i}|=2(p^{i}-1)$

The Brown-Peterson tower: fix a prime p p-local universal theory **Brown-Peterson** Brown-Peterson spectra BP with Quillen $BP_{*} = Z_{(p)}[v_{1}, v_{2}, ...].$ Wilson $|v_i|=2(p^i-1)$ evaluation on point For every n: $Z_{(p)}[v_1, v_2, \dots] \longrightarrow Z_{(p)}[v_1, \dots, v_n]$

fix a prime p The Brown-Peterson tower: p-local universal theory **Brown-Peterson** Brown-Peterson spectra BP with Quillen $BP_{*} = Z_{(p)}[v_{1}, v_{2}, ...].$ $|v_i|=2(p^i-1)$ Wilson evaluation on point "quotient map" → $BP/(v_{n+1},...) =: BP\langle n \rangle$ For every n: BP $Z_{(p)}[v_1,v_2,...] \longrightarrow Z_{(p)}[v_1,...,v_n] = BP\langle n \rangle_{\mathbf{x}}$

The Brown-Peterson tower: fix a prime p p-local universal theory **Brown-Peterson** Brown-Peterson spectra BP with Quillen $BP_{*} = Z_{(p)}[v_{1}, v_{2}, ...].$ $|v_i|=2(p^i-1)$ Wilson evaluation on point "quotient map" For every n: BP \longrightarrow BP/(v_{n+1},...) =: BP(n) $Z_{(p)}[v_1,v_2,...] \longrightarrow Z_{(p)}[v_1,...,v_n] = BP\langle n \rangle_{\mathbf{x}}$ The Brown-Peterson tower: $BP \longrightarrow \cdots \longrightarrow BP\langle n \rangle \longrightarrow \cdots \longrightarrow BP\langle 1 \rangle \longrightarrow BP\langle 0 \rangle \longrightarrow BP\langle -1 \rangle$ p-local connective K-theory $HZ_{(p)} \longrightarrow HF_{p}$

Milnor operations:

Milnor operations:

For every n: stable cofibre sequence

 $\Sigma^{|v_n|}BP\langle n \rangle \xrightarrow{v_n} BP\langle n \rangle \longrightarrow BP\langle n-1 \rangle \longrightarrow \Sigma^{|v_n|+1}BP\langle n \rangle$

Milnor operations:

For every n: stable cofibre sequence $\Sigma^{|v_n|}BP\langle n \rangle \xrightarrow{v_n} BP\langle n \rangle \longrightarrow BP\langle n-1 \rangle \longrightarrow \Sigma^{|v_n|+1}BP\langle n \rangle$

with an induced exact sequence (for any space X)

 $BP\langle n-1\rangle^{*}(X) \xrightarrow{q_n} BP\langle n\rangle^{*+|v_n|+1}(X)$

Milnor operations:

For every n: stable cofibre sequence $\Sigma^{|v_n|}BP\langle n \rangle \xrightarrow{v_n} BP\langle n \rangle \longrightarrow BP\langle n-1 \rangle \longrightarrow \Sigma^{|v_n|+1}BP\langle n \rangle$

with an induced exact sequence (for any space X)

 $BP\langle n \rangle^{*+|v_n|}(X) \longrightarrow BP\langle n \rangle^{*}(X) \searrow$

Milnor operations:

For every n: stable cofibre sequence $\Sigma^{|v_n|}BP\langle n \rangle \xrightarrow{v_n} BP\langle n \rangle \longrightarrow BP\langle n-1 \rangle \longrightarrow \Sigma^{|v_n|+1}BP\langle n \rangle$

with an induced exact sequence (for any space X)

 $BP\langle n \rangle^{*+|v_n|}(X) \longrightarrow BP\langle n \rangle^{*}(X) \searrow$

S

BP²*(X)

S

 $BP\langle n \rangle^{2} (X) \longrightarrow BP\langle n-1 \rangle^{2} (X) \xrightarrow{q_n} BP\langle n \rangle^{2} + |v_n| + 1 (X)$ U $H^{2*}(X;F_p) \xrightarrow{Q_n} H^{2*+|v_n|+1}(X;F_p)$ 07

BP^{2*}(X)

1

BP²*(X)

9 $BP\langle n \rangle^{2} (X) \longrightarrow BP\langle n-1 \rangle^{2} (X) \xrightarrow{q_n} BP\langle n \rangle^{2} + |v_n| + 1 (X)$ U algebraic V \subset X $H^{2*}(X;F_p) \longrightarrow H^{2*+|v_n|+1}(X;F_p)$ if Q_n

BP^{2*}(X)

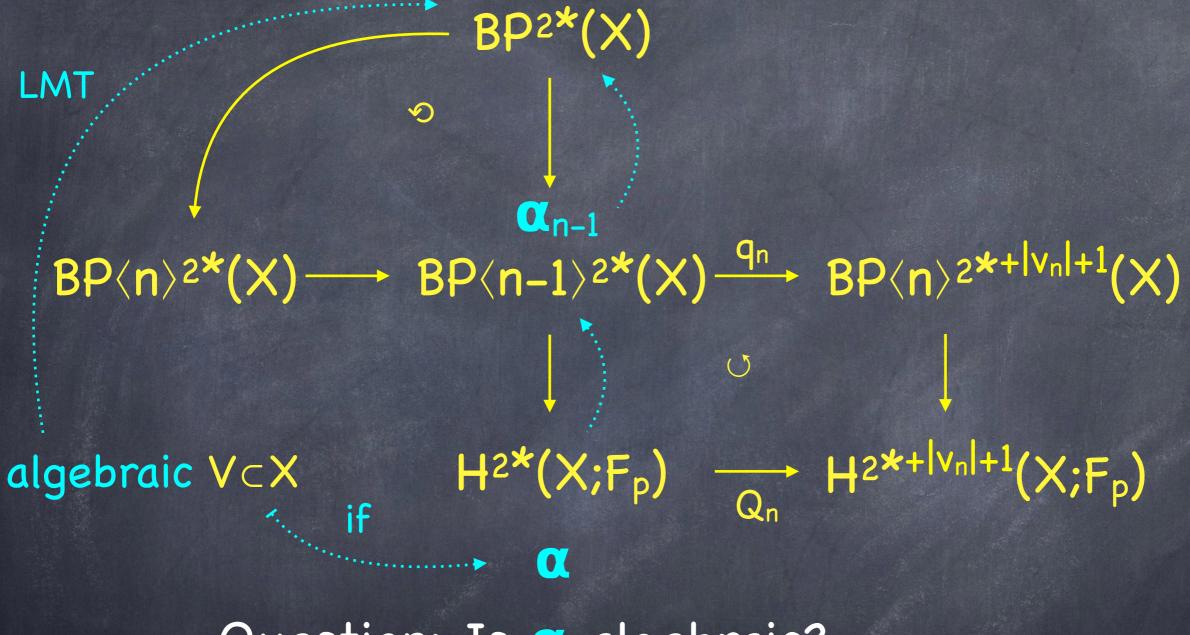
Question: Is *algebraic*?

5

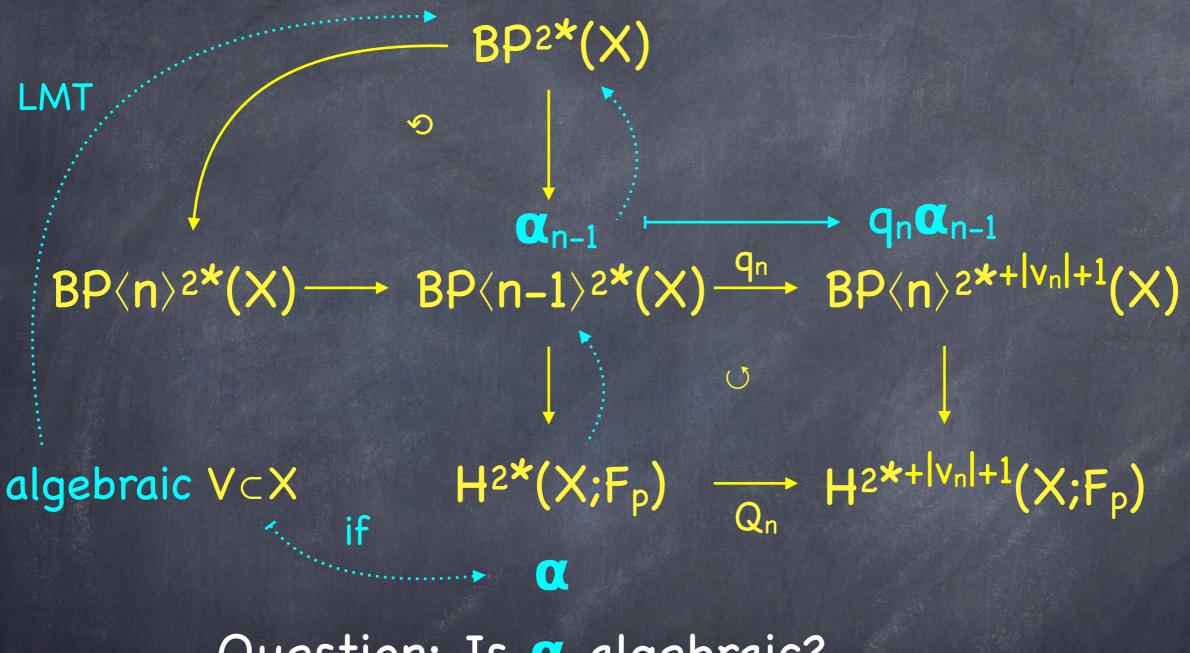
LMT

BP^{2*}(X)

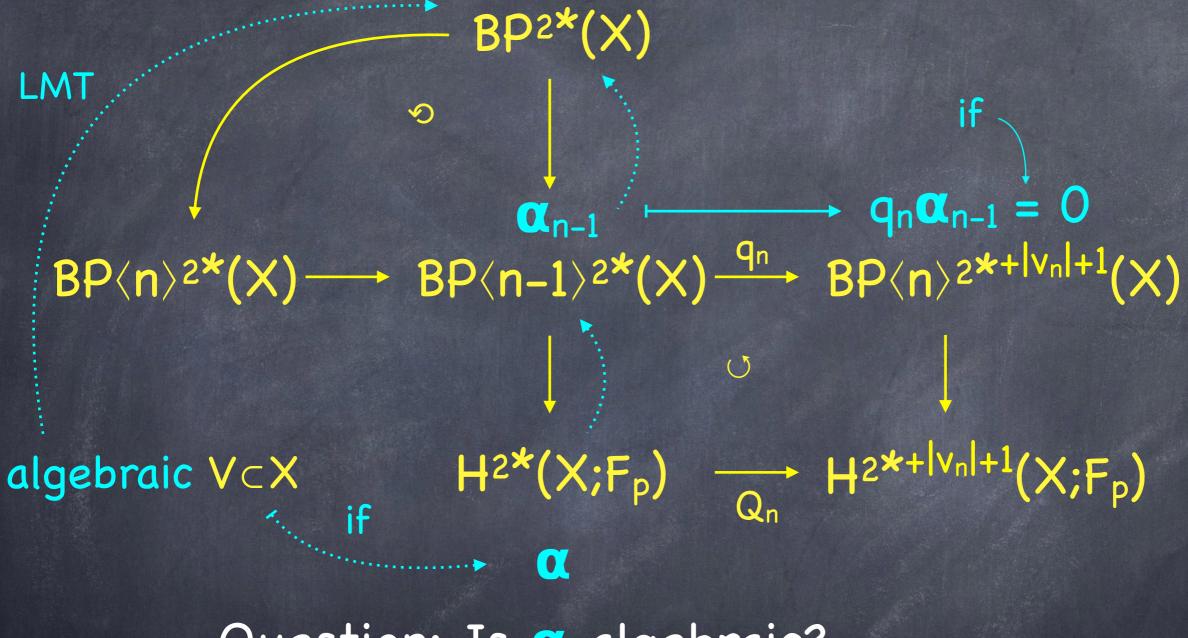
Question: Is algebraic?



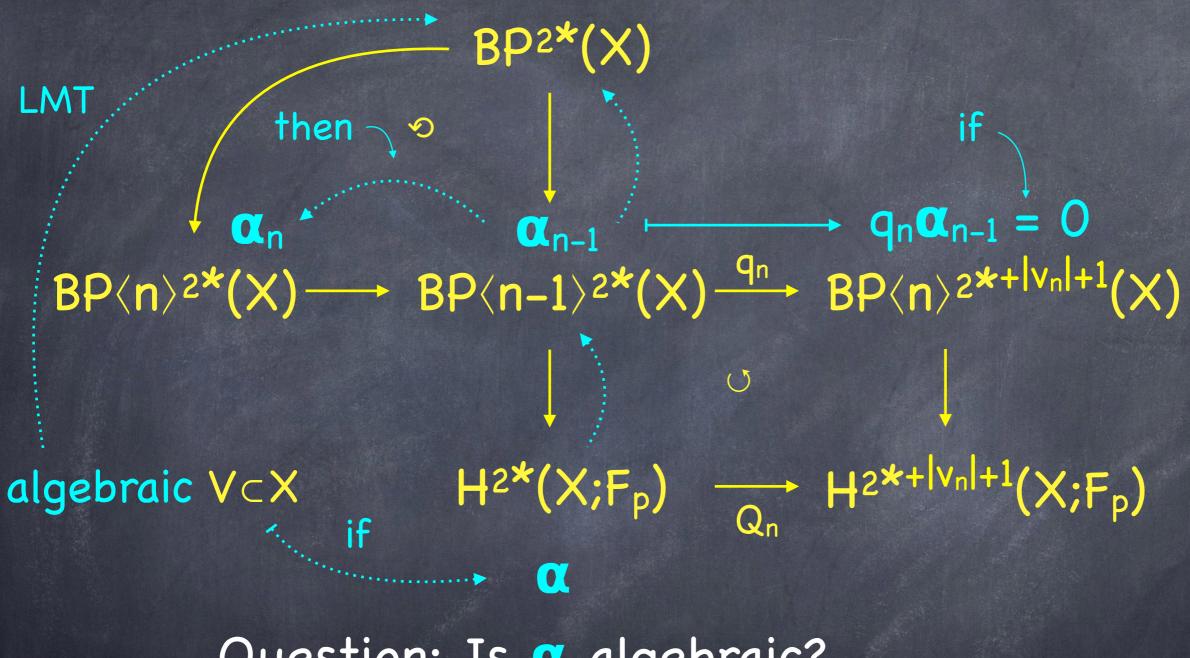
Question: Is α algebraic?



Question: Is α algebraic?



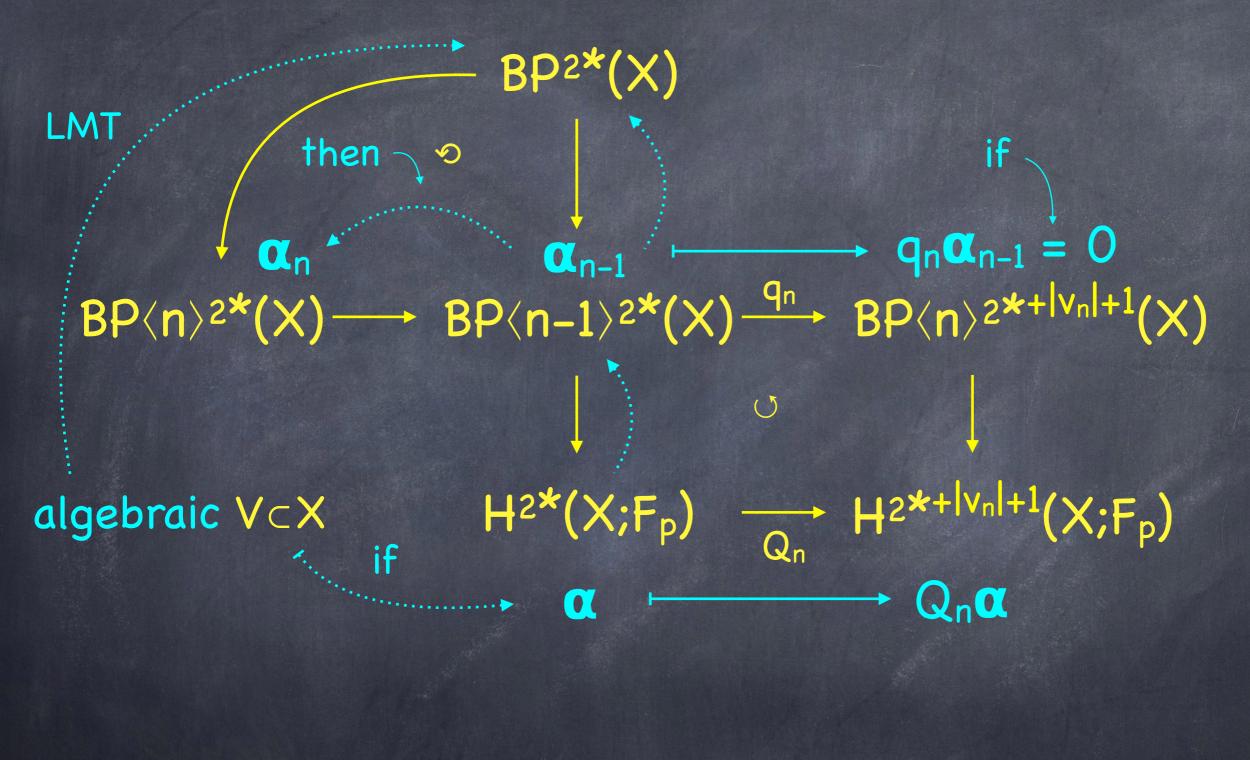
Question: Is *algebraic*?

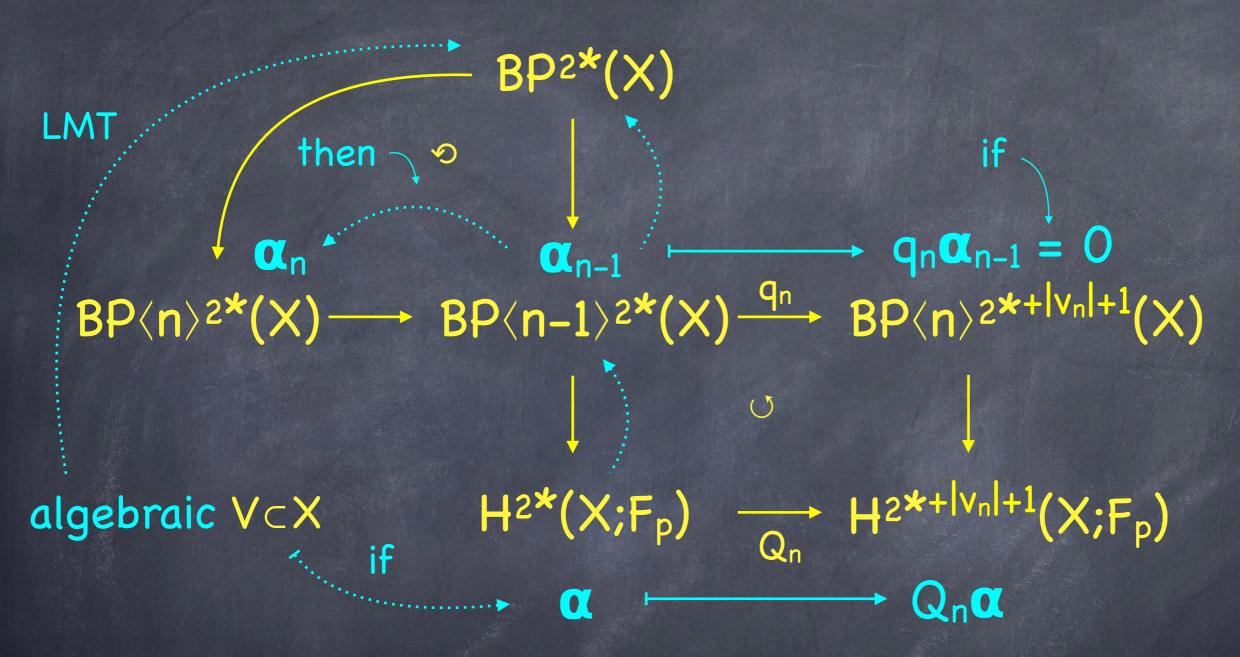


Question: Is α algebraic?

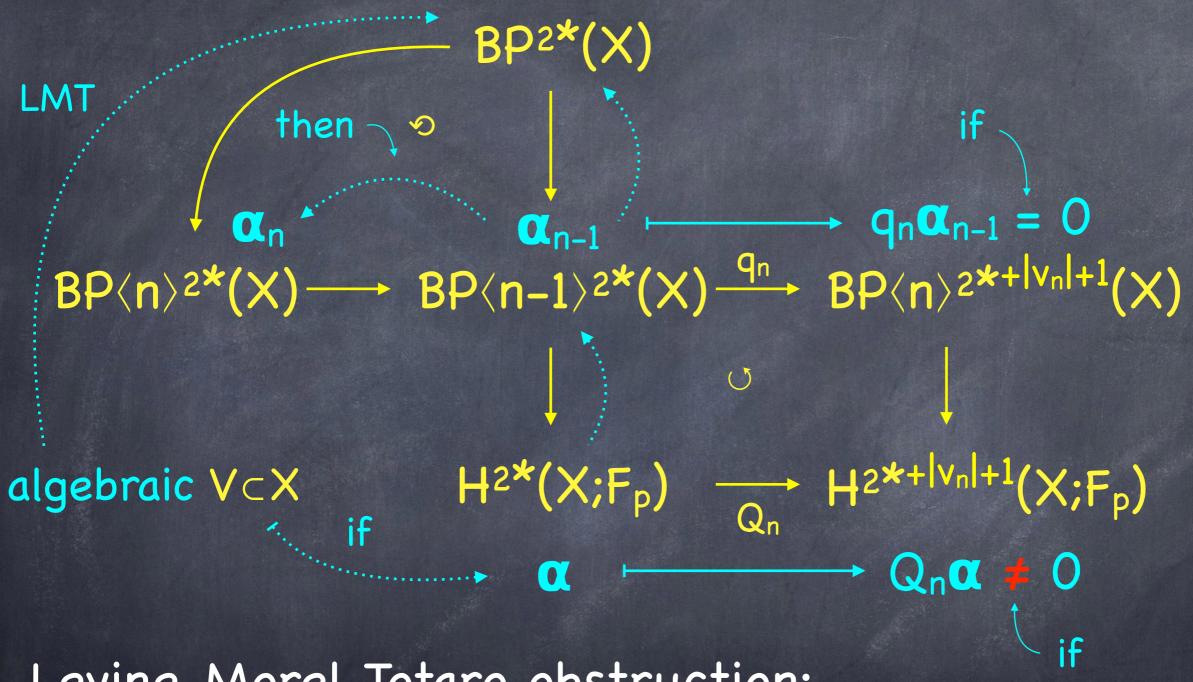


Question: Is α algebraic?

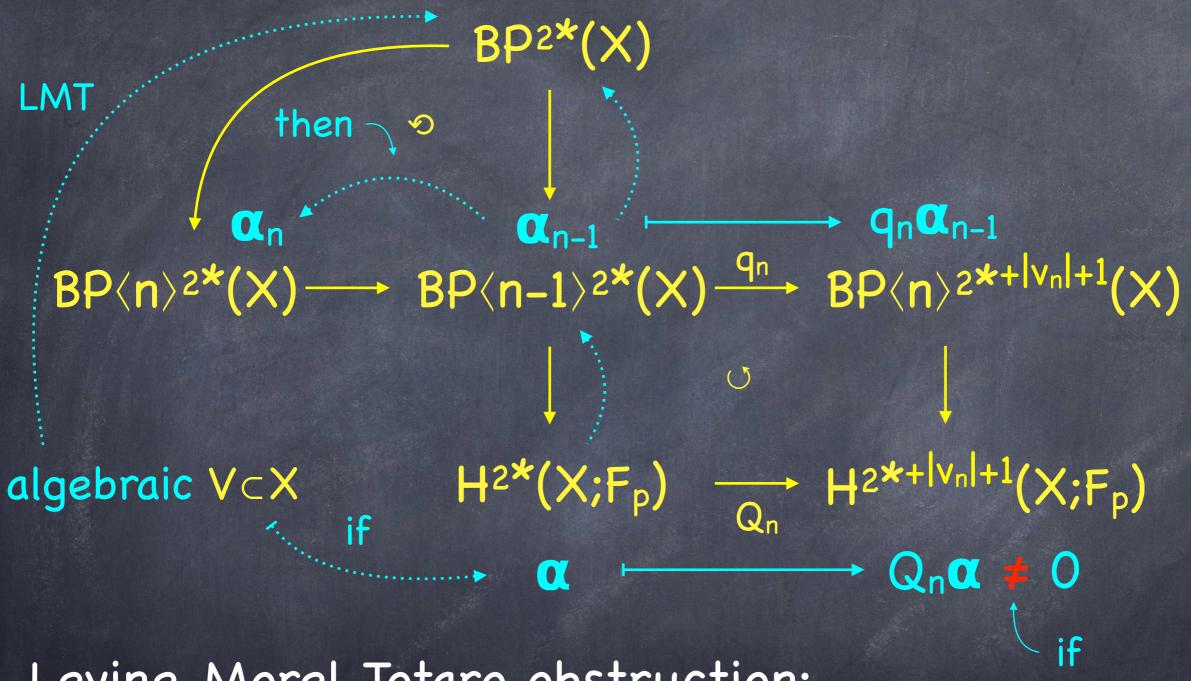




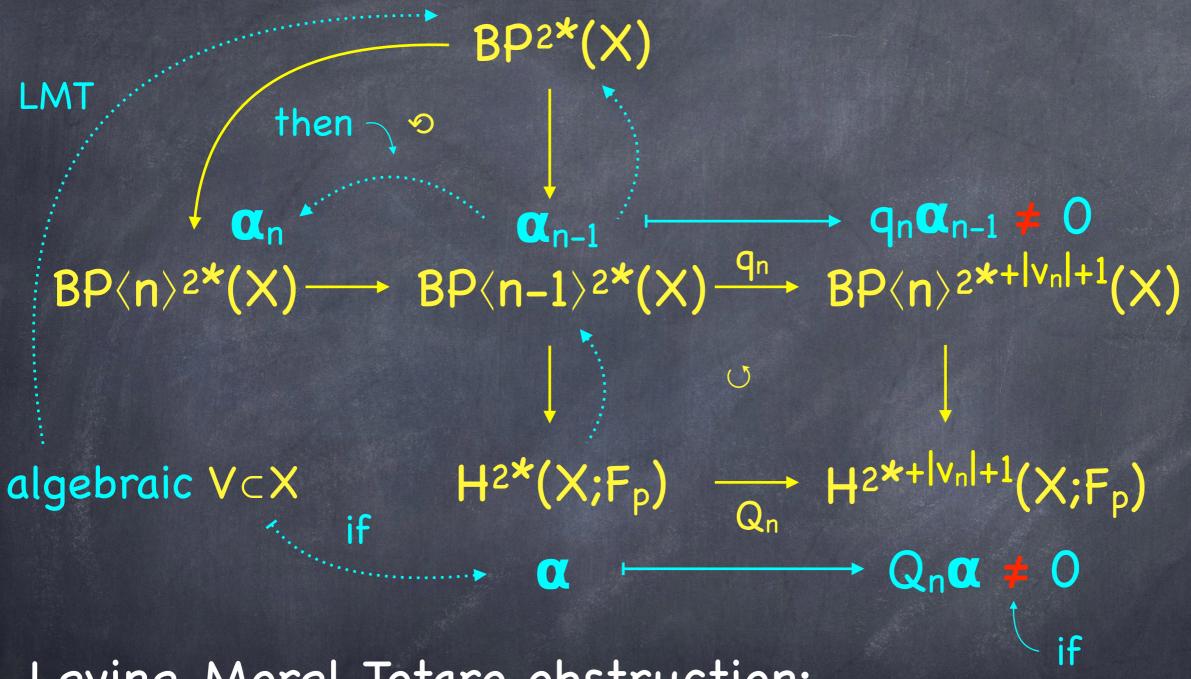
Levine-Morel-Totaro obstruction:



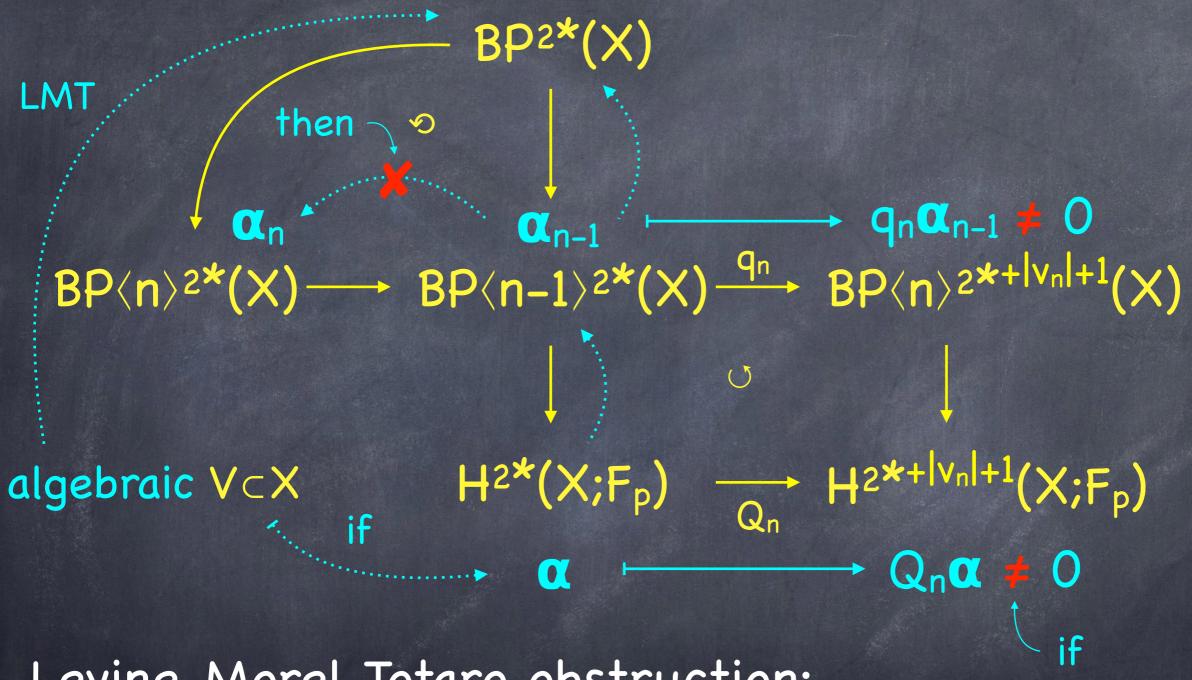
Levine-Morel-Totaro obstruction:



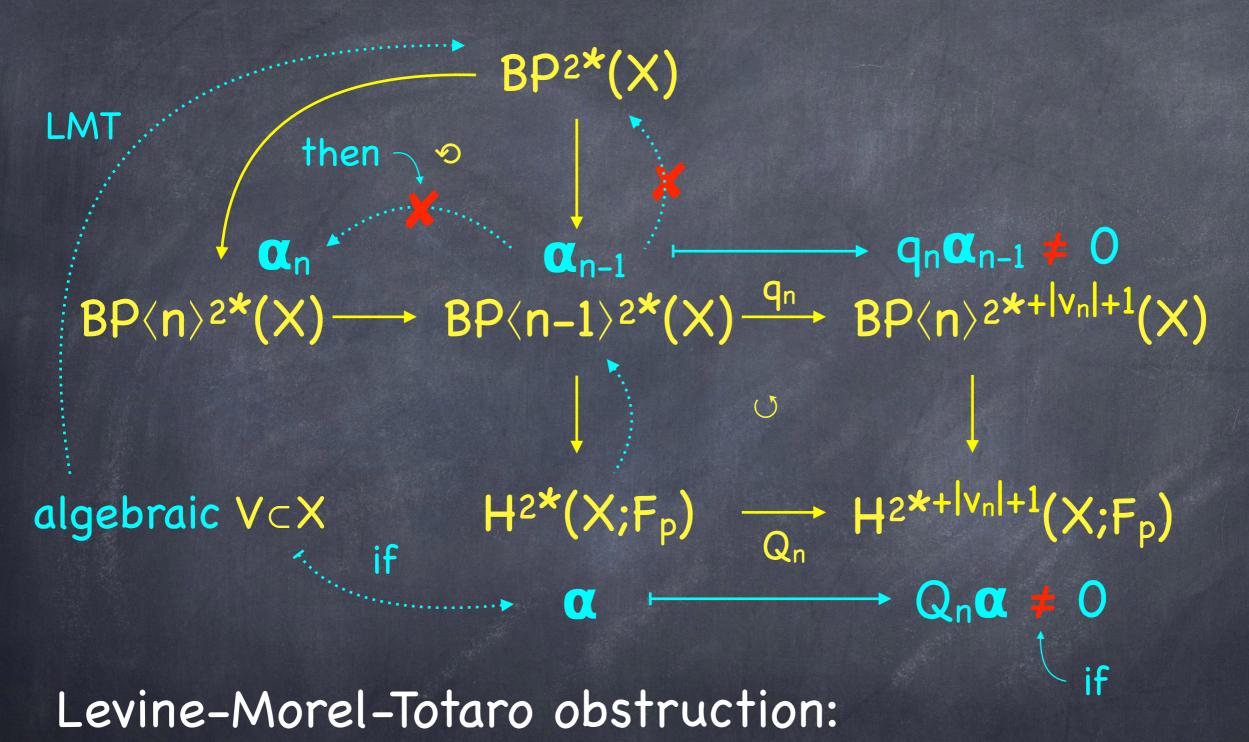
Levine-Morel-Totaro obstruction:

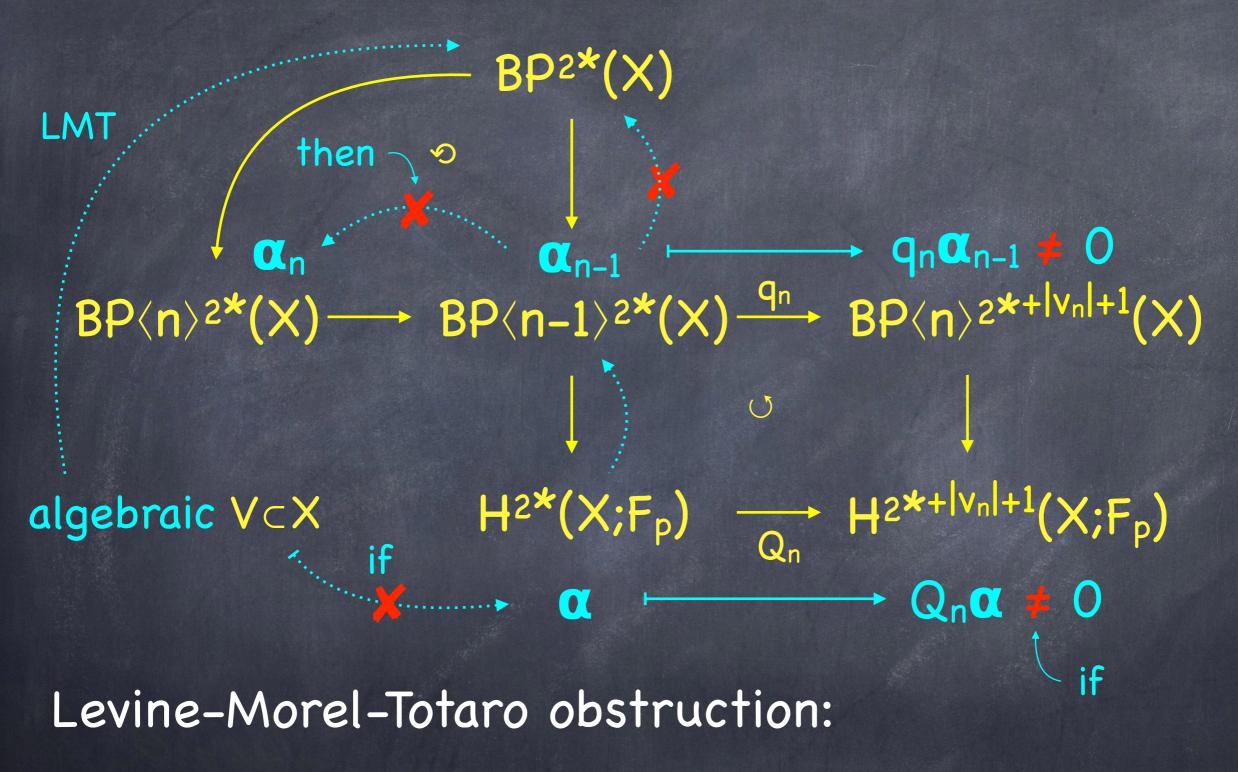


Levine-Morel-Totaro obstruction:



Levine-Morel-Totaro obstruction:





If $Q_n \alpha \neq 0$, then α is not algebraic.

so far

so far

given $\alpha \in H^{2*}(X;Z)$

now

now

 $BP\langle n \rangle^{s}$ (X)

now

motivic/algebraic spectrum $BP\langle n \rangle_{mot}^{s,r}(X)$

BP⟨n⟩^s (X)

Generalize the question: given is there so far an algebraic? [V] = $\alpha \in H^{2*}(X;Z)$ $V \subset X$ now Voevodsky Morel Vezzosi motivic/algebraic Hopkins spectrum Hu-Kriz BP(n)s (X) $BP\langle n \rangle_{mot}^{s,r}(X)$ Ormsby Hoyois Ormsby-Østvær

so far is there an algebraic?

now topological realization

Smc motivic/algebraic spectrum

 $BP\langle n \rangle_{mot}^{s,r}(X)$

 $V \subset X \qquad [V] = \alpha \in H^{2*}(X)$ $V \subset X \qquad [V] = \alpha \in H^{2*}(X)$ $V = X \quad V = X^{2}$ $V = X^{2$

 $\alpha \in H^{2*}(X;Z)$ Voevodsky Morel Vezzosi Hopkins Hu-Kriz Ormsby Hoyois Ormsby-Østvær

Smc

so far is there an algebraic?

now topological realization

motivic/algebraic spectrum

BP⟨n⟩^{s,r}(X)

"algebraic"

 $V \subset X$

"topological"

[V] =

given $\alpha \in H^{2*}(X;Z)$ Voevodsky Morel Vezzosi Hopkins Hu-Kriz Ormsby Hoyois Ormsby-Østvær

given is there so far an algebraic? $[V] = \alpha \in H^{2*}(X;Z)$ $V \subset X$ topological now Voevodsky realization Morel Manc Smc Vezzosi motivic/algebraic Hopkins spectrum top. real. induced hom. Hu-Kriz → BP〈n〉s (X) $BP\langle n \rangle_{mot}^{s,r}(X)$ Ormsby Hoyois "algebraic" "topological" Ormsby-Østvær

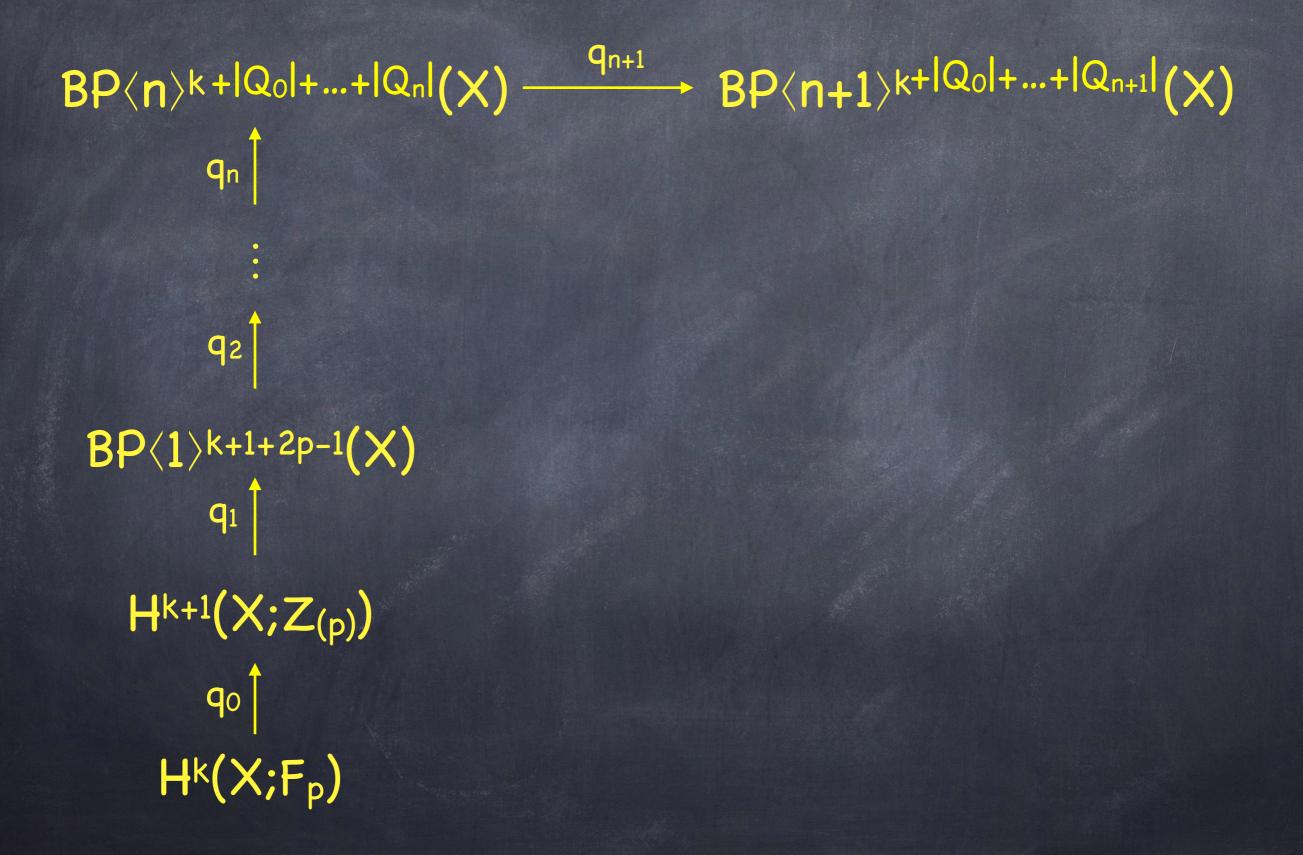
Question: How can we produce non-algebraic elements in BP(n)²*(X)?

H^k(X;F_p)

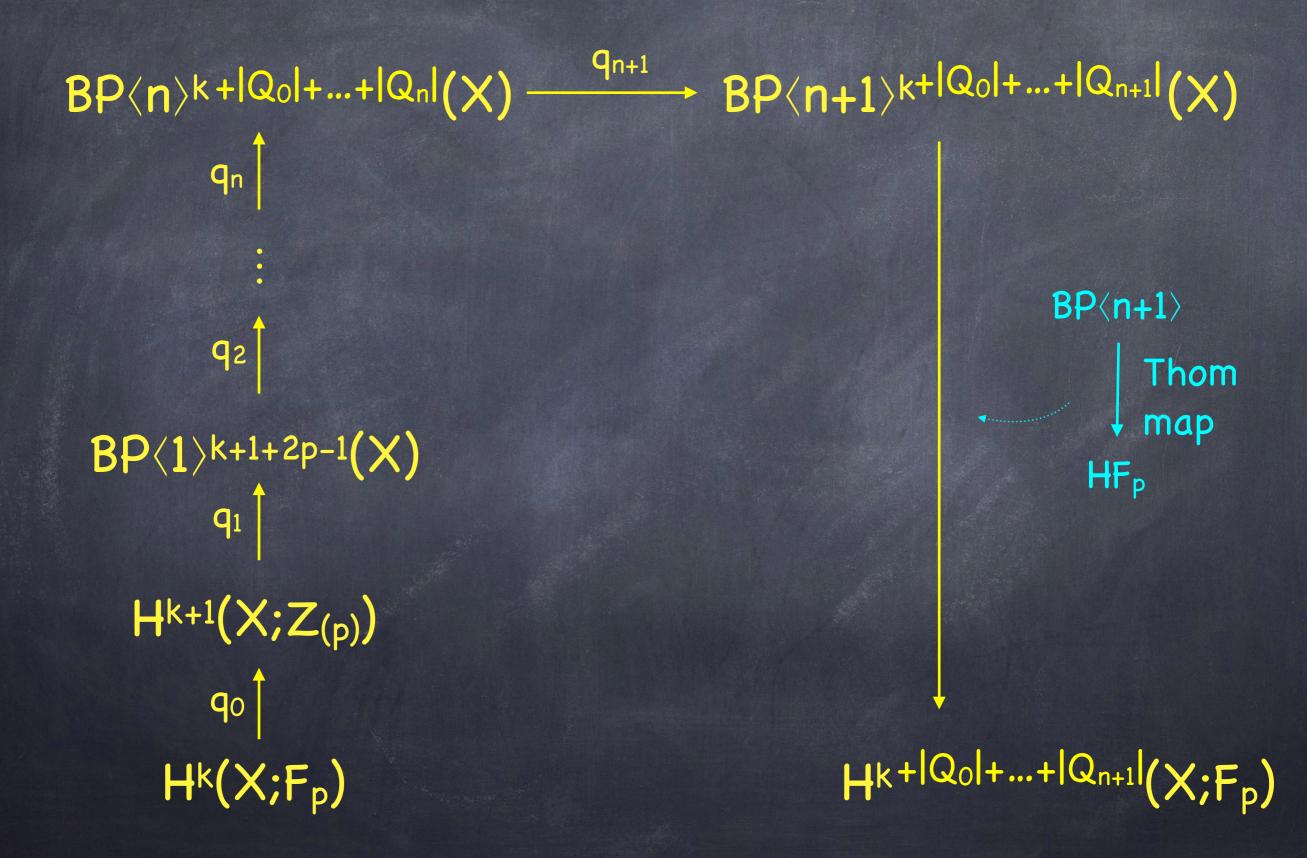
 $H^{k+1}(X;Z_{(p)})$ q_o $H^{k}(X;F_{p})$

 $BP\langle 1 \rangle^{k+1+2p-1}(X)$ q_{1} $H^{k+1}(X;Z_{(p)})$ q_{0} $H^{k}(X;F_{p})$

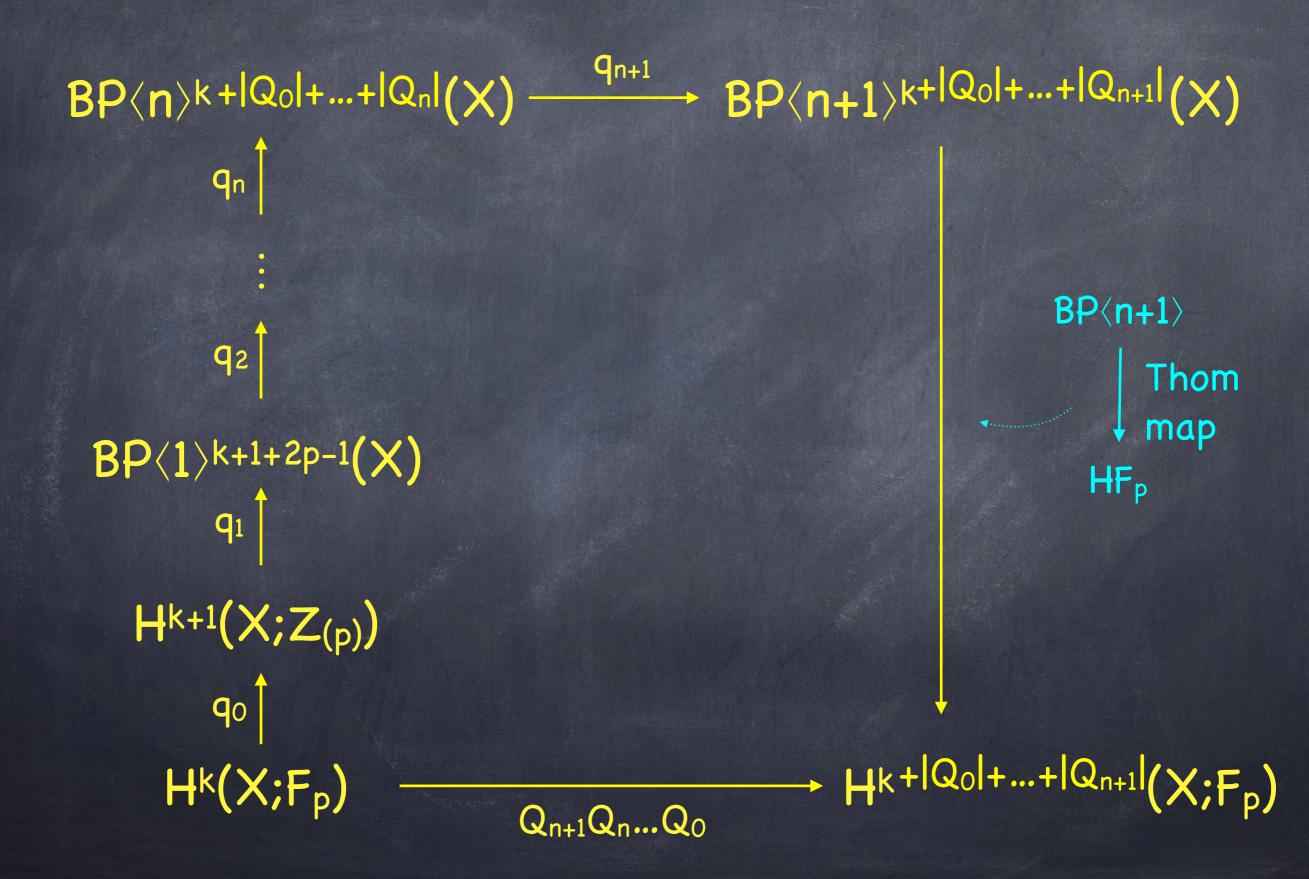
```
BP\langle n \rangle k + |Q_0| + ... + |Q_n|(X)
            qn
            q<sub>2</sub>
BP\langle 1 \rangle^{k+1+2p-1}(X)
            q<sub>1</sub>
    H^{k+1}(X;Z_{(p)})
            q0
       H^{k}(X;F_{p})
```

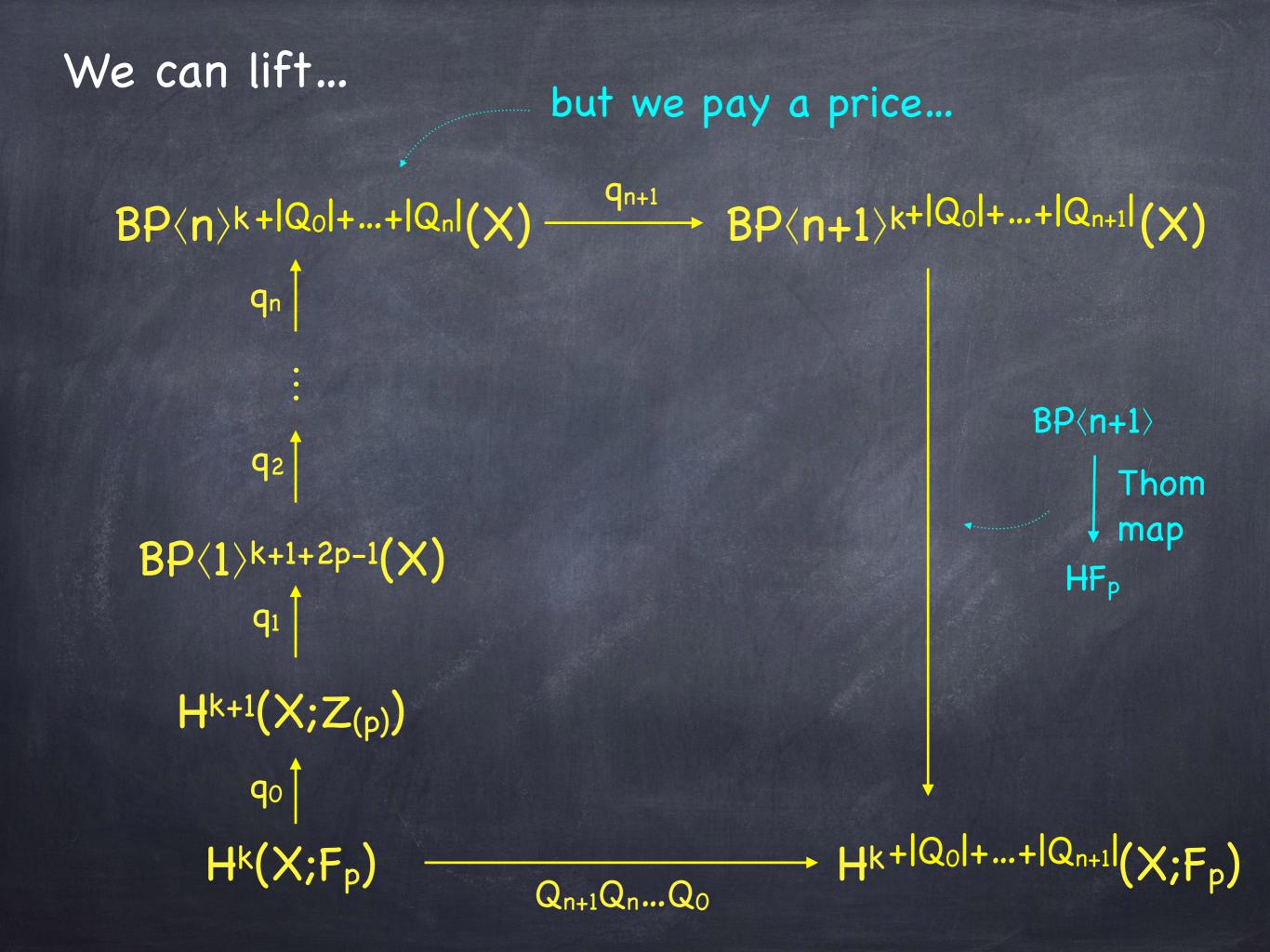


We can lift...



We can lift...





Theorem (Q.): For every n, there is a smooth projective complex algebraic variety X and a class in $BP\langle n \rangle^{2(p^n+...+1)+2}(X)$

which is not in the image of the map

 $BP\langle n \rangle_{m \circ t}^{2^{*}}(X) \xrightarrow{\text{top. realization}} BP\langle n \rangle^{2^{*}}(X).$

Theorem (Q.): For every n, there is a smooth projective complex algebraic variety X and a class in $BP\langle n \rangle^{2(p^n+...+1)+2}(X)$

which is not in the image of the map

 $BP\langle n \rangle_{m \circ t}^{2^{*}}(X) \xrightarrow{\text{top. realization}} BP\langle n \rangle^{2^{*}}(X).$

Proof:

Theorem (Q.): For every n, there is a smooth projective complex algebraic variety X and a class in $BP\langle n \rangle^{2(p^n+...+1)+2}(X)$

which is not in the image of the map

 $BP\langle n \rangle_{m \acute{o}t}^{2^{\ast}, \ast}(X) \xrightarrow{\text{top. realization}} BP\langle n \rangle^{2^{\ast}}(X).$

Proof: Let $G_k:=T_k(Z/p)$ (following Atiyah-Hirzebruch).

Theorem (Q.): For every n, there is a smooth projective complex algebraic variety X and a class in $BP\langle n \rangle^{2(p^n+...+1)+2}$ (X)

which is not in the image of the map

 $BP\langle n \rangle_{m \acute{o}t}^{2^{\ast}, \ast}(X) \xrightarrow{\text{top. realization}} BP\langle n \rangle^{2^{\ast}}(X).$

Proof: Let $G_k:=T_k(Z/p)$ (following Atiyah-Hirzebruch).

We know:

Theorem (Q.): For every n, there is a smooth projective complex algebraic variety X and a class in $BP\langle n \rangle^{2(p^n+...+1)+2}(X)$

which is not in the image of the map

 $BP\langle n \rangle_{m \acute{o}t}^{2^{*}}(X) \xrightarrow{\text{top. realization}} BP\langle n \rangle^{2^{*}}(X).$

Proof: Let $G_k:=T_k(Z/p)$ (following Atiyah-Hirzebruch).

We know: • $H^*(BG_k;F_p) = F_p[y_1,...,y_k] \otimes \Lambda(x_1,...,x_k);$ |y_i|=2 • |x_i|=1

Theorem (Q.): For every n, there is a smooth projective complex algebraic variety X and a class in $BP\langle n \rangle^{2(p^n+...+1)+2}$ (X)

which is not in the image of the map

 $BP\langle n \rangle_{m \acute{o}t}^{2^{*}}(X) \xrightarrow{\text{top. realization}} BP\langle n \rangle^{2^{*}}(X).$

Proof: Let $G_k:=T_k(Z/p)$ (following Atiyah-Hirzebruch).

We know: • $H^*(BG_k;F_p) = F_p[y_1,...,y_k] \otimes \Lambda(x_1,...,x_k);$ $|y_i|=2$ $|x_i|=1$

• $Q_j(x_i) = y_i^{p_j}, Q_j(y_i) = 0.$

Proof continued:

 $\begin{array}{l} \mathsf{H}^{*}(\mathsf{BG}_{k};\mathsf{F}_{p}) = \mathsf{F}_{p}[y_{1},...,y_{k}] \otimes \Lambda(x_{1},...,x_{k}); \\ \mathsf{Q}_{j}(x_{i}) = y_{i}^{p^{j}}, \ \mathsf{Q}_{j}(y_{i}) = 0. \end{array}$

Proof continued: $H^*(BG_k;F_p) = F_p[y_1,...,y_k] \otimes \Lambda(x_1,...,x_k);$ $Q_j(x_i) = y_i^{p_j}, Q_j(y_i) = 0.$

Choose: k=n+3 and $\alpha:=x_1...x_{n+3}$ in $H^{n+3}(BG_k;F_p)$.

Proof continued: $H^*(BG_k;F_p) = F_p[y_1,...,y_k] \otimes \Lambda(x_1,...,x_k);$ $Q_j(x_i) = y_i^{p_j}, Q_j(y_i) = 0.$

Choose: k=n+3 and $\alpha:=x_1...x_{n+3}$ in $H^{n+3}(BG_k;F_p)$.

Check: $Q_{n+1}...Q_0(\alpha) \neq 0$.

Proof continued: $H^*(BG_k;F_p) = F_p[y_1,...,y_k] \otimes \Lambda(x_1,...,x_k);$ $Q_j(x_i) = y_i^{p_j}, Q_j(y_i) = 0.$ Choose: k=n+3 and $\alpha:=x_1...x_{n+3}$ in $H^{n+3}(BG_k;F_p)$. Check: $Q_{n+1}...Q_0(\alpha) \neq 0$. Hence x:=q_n...q₀(α) in BP(n)^{2(pn+...+1)+2} (BG_{n+3}) is not in the image of the map $BP^{2(p^{n}+\ldots+1)+2}(BG_{n+3}) \longrightarrow BP\langle n \rangle^{2(p^{n}+\ldots+1)+2}(BG_{n+3}).$ Proof continued: $H^*(BG_k;F_p) = F_p[y_1,...,y_k] \otimes \Lambda(x_1,...,x_k);$ $Q_j(x_i) = y_i^{p_j}, Q_j(y_i) = 0.$ Choose: k=n+3 and $\alpha:=x_1...x_{n+3}$ in $H^{n+3}(BG_k;F_p)$. Check: $Q_{n+1}...Q_0(\alpha) \neq 0$. Hence x:=q_n...q₀(α) in BP(n)^{2(pn+...+1)+2} (BG_{n+3}) is not in the image of the map $BP^{2(p^{n}+\ldots+1)+2}(BG_{n+3}) \longrightarrow BP\langle n \rangle^{2(p^{n}+\ldots+1)+2}(BG_{n+3}).$ Finally, set X = Godeaux-Serre variety associated to the group G_{n+3} and pullback \times via a $2(p^{n+1}+...+1)+1 X \longrightarrow BG_{n+3} \times CP^{\infty}$. connected map

• For n=0: get example of Atiyah and Hirzebruch.

For n=0: get example of Atiyah and Hirzebruch.

Other types of non-alg. classes in H*(X;Z):

• For n=0: get example of Atiyah and Hirzebruch.

Other types of non-alg. classes in H*(X;Z):topological"

- Kollar: non-torsion classes on hypersurface in P4.
- Voisin: torsion classes based on Kollar's example.

- For n=0: get example of Atiyah and Hirzebruch.
- Other types of non-alg. classes in H*(X;Z):topological"

`not

- Kollar: non-torsion classes on hypersurface in P4.
- Voisin: torsion classes based on Kollar's example.
- Benoist-Ottem: torsion classes of degree 4 on 3-folds.

For n=0: get example of Atiyah and Hirzebruch.

Other types of non-alg. classes in H*(X;Z):topological"

- Kollar: non-torsion classes on hypersurface in P4.
- Voisin: torsion classes based on Kollar's example.
- Benoist-Ottem: torsion classes of degree 4 on 3-folds.
 - Yagita, Pirutka-Yagita, Kameko, and others:
 - non-torsion class in H*(BG;Z) for alg. group G with (Z/p)³⊂G

• For n=0: get example of Atiyah and Hirzebruch.

Other types of non-alg. classes in H*(X;Z):topological"

- Kollar: non-torsion classes on hypersurface in P4.
- Voisin: torsion classes based on Kollar's example.
- Benoist-Ottem: torsion classes of degree 4 on 3-folds.
 - Yagita, Pirutka-Yagita, Kameko, and others:
 - non-torsion class in H*(BG;Z) for alg. group G with (Z/p)³⊂G
 - Antieau: class in H*(BG;Z) for alg. group G, represent. theory
 on which the Qi's vanish, but a higher differential in the AH-spectral sequence is nontrivial.

• For n=0: get example of Atiyah and Hirzebruch.

Other types of non-alg. classes in H*(X;Z):topological"

- Kollar: non-torsion classes on hypersurface in P4.
- Voisin: torsion classes based on Kollar's example.
- Benoist-Ottem: torsion classes of degree 4 on 3-folds.
 non-torsion classes in BP(n)*(BG)
 - Yagita, Pirutka-Yagita, Kameko, and others:
 - non-torsion class in H*(BG;Z) for alg. group G with (Z/p)³⊂G
 - Antieau: class in H*(BG;Z) for alg. group G, represent. theory
 on which the Qi's vanish, but a higher differential in the AH-spectral sequence is nontrivial.

Thank you!