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Check: Qn+1…Q0(𝝰)≠0.

Choose: k=n+3 and 𝝰:=x1…xn+3 in Hn+3(BGk;Fp).
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Finally, set X = Godeaux-Serre variety 
associated to the group Gn+3 and pullback x via  

X BGn+3 × CP∞. a 2(pn+1+…+1)+1-

connected map

□
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Thank you!


