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Some remarks on profinite completion of spaces 

Gereon Quick 

Abstract. 

We study profinite completion of spaces in the model category of 
profinite spaces and construct a rigidification of the completion func­
tors of Artin-Mazur and Sullivan which extends also to non-connected 
spaces. Another new aspect is an equivariant profinite completion func­
tor and equivariant fibrant replacement functor for a profinite group 
acting on a space. This is crucial for applications where, for example, 
Galois groups are involved, or for profinite Teichmiiller theory where 
equivariant completions are applied. Along the way we collect and sur­
vey the most important known results of Artin-Mazur, Sullivan and 
Rector about profinite completion of spaces from a modern point of 
view. So this article is in part of expository nature. 

§1. Introduction 

The use of profinite methods in homotopy theory arose in the context 
of applications to arithmetic and algebraic geometry in the work of Artin 
and Mazur [1], where they introduced an etale pro-homotopy type for 
schemes. Their motivation was to define etale topological invariants for 
schemes. It turned out that for applications a profinitely completed 
version of the etale type is more suitable or even necessary. Artin and 
Mazur defined the profinite completion X --+ X of a connected space X 
as the universal map from X to objects in pro-1-lo,fin, the pro-category 
of the homotopy category 1-lo,fin of connected finite spaces, i.e. spaces X 
whose homotopy groups JrnX are finite for all n 2'" 0 and are even trivial 
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for almost all n. Artin and Mazur constructed X as a pro-object in the 
homotopy category of spaces. 

In his fundamental work on homotopy theory and the Adams conjec­
ture [28], Sullivan revisited these methods and showed that this pro finite 
completion as a pro-space can in fact be realized in the homotopy cat­
egory of spaces 1i itself by proving that the Artin-Mazur pro-object 
admits a homotopy limit in 1i.1 Later on, Rector rigidified the def­
inition of Artin and Mazur and constructed a profinite completion of 
a connected space as a pro-object in the category of connected finite 
spaces. 

By introducing a more suitable category, Morel opened a whole new 
perspective on the question. He significantly improved the previous re­
sults for the pro-p-completion of spaces based on a pro-p-model structure 
for any fixed prime p. He considered in [18] the category S of simplicial 
objects of profinite sets, called profinite spaces. Profinite completion 
of sets induces a completion functor from S to S. In order to obtain 
a pro-p-completion functor that is homotopy invariant and generalizes 
Artin-Mazur p-completion, Morel equipped S with a model structure in 
which weak equivalences are maps that induce isomorphisms in continu­
ous Z/p-cohomology. One of the main results of [18] is that every profi­
nite space X is weakly equivalent in S to a limit of finite-p-spaces, i.e. 
spaces which have only a finite number of nontrivial homotopy groups 
each of which is a finite p-group. After composition with the functor 
S -+ S, this rigidifies the constructions of Artin-Mazur and Sullivan 
for pro-p-completion and also generalizes the results of Rector in [25] to 
non-connected spaces. 

The purpose of this paper is to generalize these ideas to the full 
profinite completion for non-connected spaces on the basis of a different 
model structure on S. Moreover, we extend the results to profinite 
spaces with a continuous action by a profinite group. 

In [20], a model structure on S has been constructed in which weak 
equivalences are maps that induce isomorphisms on profinite fundamen­
tal groups and continuous cohomology with finite local coefficients. The 
fibrant replacement functor in this structure has not been made explicit 
in [20]. The first goal of this paper is to generalize the idea of Morel and 
Rector to construct an explicit fibrant replacement and thereby to show 
that every profinite space is weakly equivalent in S to a limit of finite 

1Sullivan's comment on page 2 of [28]: "... we had to domesticate the 
abstract beasts of [1] to make them usable in ordinary algebraic topology." 
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spaces in the above sense. Composition with the functor S --+ S gives a 
rigidification and generalization of profinite completion of spaces. 

We remark that although we do not treat these cases in this paper, 
the methods of [20] do not only work for the class of all finite groups but 
also for any choice of subclass of finite groups. The construction in this 
paper is also applicable for any such subclass. For example one could 
choose a set L of primes and define a pro-L-model structure on S. This 
would yield a rigid pro-L-finite completion functor, again generalizing 
Rector's approach. Note that the case of pro- p-completion is special in 
this context. The construction of the Z/p-fibrant replacement in [18] is 
based on the Bousfield-Kan Z/p-completion of [4]. We do not know of 
any way to use this approach in the more general case of profinite or 
pro-£-completion if L contains more than one prime. A very interesting 
comparison of pro-p- and Bousfield-Kan Z/p-completion is given in [11]. 

Now let G be a profinite group and let Sa be the category of simpli­
cial objects in the category of profinite sets with a continuous G-action. 
We call the objects of Sa profinite G-spaces. In [21], a model structure 
on Sa has been defined which is based on the underlying model structure 
on S. 

Such profinite G-spaces occur naturally when we look at the etale 
topological type of a scheme X defined over a field k. Let k be a separable 
closure of k and XI< the base change of X to k. The absolute Galois group 
G = Gal( k / k) acts by functoriality on the completed version Et X k of 
the etale type of x~< and, with a little care, Et x~< can be viewed as an 
object in Sa. 

One of the fundamental operations for group actions is taking fixed 
points. Since taking fixed points is not homotopy invariant, one also con­
siders the invariant version called homotopy fixed points. For a profinite 
G-space X, one would like to remember the continuity of the G-action. 
Therefore, one defines the continuous homotopy fixed point space xhG 

of X to be the G-fixed points of the mapping space of continuous maps 
from EG to ReX, where EG denotes a contractible profinite space with 
a free G-action and ReX is a fibrant replacement of X in Sc. Many 
mathematical problems involving a group action can be formulated in 
terms of homotopy fixed points. Hence to understand this fibrant re­
placement is of fundamental importance for continuous group actions. 

The main result of this paper is that there is an explicit fibrant 
replacement functor for Sa based on the fibrant replacement functor 
for S. In particular, we obtain that every profinite G-space is weakly 
equivalent in Sc to a limit of continuous G-spaces each of which is also 
a finite space in the usual sense. 
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Moreover, let 1a1 be the underlying abstract group of a and let S1 0 1 
be the category of simplicial objects in the category of 1a1-sets. We will 
define a a-equivariant completion functor from S1o1 to So. Then the 

explicit fibrant replacement functor in So will provide a a-equivariant 
rigid profinite completion functor for 1a1-spaces extending the comple­
tion functors for spaces. 

We would like to mention two interesting applications of profinite 
a-spaces in algebraic geometry that motivated this paper. Firstly, Boggi 
has formulated in [2] and [3] some central conjectures in profinite Te­
ichmuller theory using profinite spaces, profinite a-spaces and a slightly 
different a-equivariant completion functor. This has been further stud­
ied and reviewed by Lochak in [16]. Since these conjectures are stated 
in terms of homotopy theoretical problems, an explicit fibrant replace­
ment functor for profinite a-spaces seems crucial for this approach. For, 
the set-theoretic a-completion functor from a-spaces to profinite a­
spaces just yields an object in So. But if we want to understand the 
homotopy type of this object, we need a rigid and homotopy invariant 
a-completion. This is provided by the fibrant replacement functor in 
So. 

Secondly, continuous homotopy fixed points have been used in [21] 
to reinterpret the map of Grothendieck's section conjecture. Let k be a 
number field k and let X be a smooth projective curve of genus at least 
2 over k. There is a short exact sequence of etale fundamental groups 

Grothendieck's conjecture predicts that the map from the set of k­
rational points of X to the set of sections Gal( k j k) ---t 1rtt X up to 
conjugation by the action of 1rft X10 is a bijection. By generalizing are­
sult of Cox, it has been shown in [21] that the latter set of sections is in 
fact in bijection with the set 1r0 ((Et Xk)hGai(k/k)) of connected compo­

nents of the continuous homotopy fixed points of Et X k under the Galois 
action. If there is any hope to obtain some new information about the 
map of the section conjecture via this approach, one has to understand 
the shape of the Gal(k/k)-equivariant fibrant replacement of Et xk in 
So. 

Let us quickly outline the content of the paper. In the next section 
we introduce profinite spaces with the model structure on S. We study 
the various types of profinite completion of spaces and construct the 
explicit fibrant replacement functor in S. Along this way, we resume the 
relation between profinite completion of groups and spaces and give a 
survey of known results in the setting of profinite spaces. 
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Then we study profinite G-spaces under the action of a profinite 
group G. We introduce a G-equivariant completion functor from G­
spaces and how it can be simplified when either G satisfies the property 
of strong completeness, e.g. when G is topologically finitely generated, or 
when the action is discrete. Finally, we explain how fibrant replacement 
functor in S yields a fib rant replacement in Sc. 

Acknowledgements. I would like to express my gratitude to the orga­
nizers of the Kyoto conferences on Galois-Teichmiiller theory and Arith­
metic Geometry where I had the great opportunity to learn about profi­
nite Teichmiiller theory and related ideas. I'm especially grateful to 
Pierre Lochak for drawing my attention to this subject and many inter­
esting discussions. I would also like to thank Mike Hopkins for helpful 
conversations. 

§2. Spaces and profinite spaces 

The homotopy category of topological spaces has a good combina­
torial model provided by simplicial sets. It is the category, denoted by 
S, of simplicial objects in the category of sets. An object of S will be 
called a space. Instead of just looking at sets, one could consider simpli­
cial objects in categories of sets with additional structure, e.g. simplicial 
objects in the category of groups or pro-p-groups etc. In this paper, we 
will study a topological condition and consider simplicial objects in the 
category of profinite sets with its limit topology. This category has first 
been studied by Morel in [18]. 

Let E denote the category of sets and let F be the full subcategory 
of finite sets. Let E be the category of compact Hausdorff and totally 
disconnected topological spaces. We may identify F with a full sub­
category of E in the obvious way. The limit functor lim: pro-F --+ E 
is an equivalence of categories. Moreover, the forgetful functor E --+ E 
admits a left adjoint () : E --+ E which is called profinite completion. 
For a set X, its profinite completion is defined as follows. Let R(X) 
be the set of equivalence relations on X such that X/ R is a finite set. 
The set R(X) is ordered by inclusion. The profinite completion of X 
is defined as the limit of the finite sets X/ R over all R E R(X), i.e. 

X := limRER(X) X/ R. 
We denote by S the category of simplicial profinite sets, i.e. simpli­

cial objects in E. The objects of Swill be called profinite spaces and will 
be our main object of study. The reader should note that, although E is 
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equivalent to pro-F, S is not equivalent to the pro-category of simplicial 
finite sets. A careful treatment of such phenomena is given in [13]. If 
X is a profinite space, we can decompose it as a limit of simplicial finite 
sets. We define the set R(X) of simplicial open equivalence relations on 
X. An element R of R( X) is a simplicial profinite subset of the product 
X x X such that, in each degree n, Rn is an equivalence relation on 
Xn and an open subset of Xn X Xn. It is ordered by inclusion. For 
every element R of R( X), the quotient X j R is a simplicial finite set and 
the map X --+ X/ R is a map of profinite spaces. The canonical map 
X --+ limRER(X) X/ R is an isomorphism inS, cf. [18], Lemme 1. 

The completion of sets induces a functor () : S --+ S, which is also 
called profinite completion. For a space Z, its profinite completion can 
be described as follows. Let R(Z) be the set of all simplicial equivalence 
relations R on Z such that the quotient Z j R is a simplicial finite set, 
i.e. each Zn/ Rn is a finite set for n ;::: 0. Then R( Z) is again ordered by 
inclusion. The profinite completion Z of Z is defined as the limit of the 
Z/R for all R E R(Z), i.e. Z := limRER(Z) ZjR. Profinite completion 

of spaces is again left adjoint to the forgetful functor I · I : S --+ S which 
sends a profinite space to its underlying simplicial set. 

The category S can be equipped with different interesting model 
structures. Morel was the first to define a model structure based on 
continuous Z/p-cohomology in [18]. We will use another model structure 
that has been defined in [20] and that we will introduce now. 

Let X be a profinite space and let 1r be a topological abelian group. 
The continuous cohomology H~ts(X; n) of X with coefficients in 1r is de­
fined as the cohomology of the complex C~ts (X; 1r) of continuous co chains 
of X with values in n, i.e. C~8 (X; n) denotes the set Hom.s(Xn, n) of 
continuous maps a : Xn --+ n and the differentials 15n : C~s (X; n) --+ 
C~t 1 (X; 1r) are the morphisms associating to a the map 2..::~~01 a o di, 
where di denotes the ith face map of X. If 1r is a finite abelian group 
and Z a simplicial set, then the cohomologies H*(Z; n) and H~ts(Z; n) 
are canonically isomorphic by adjointness of profinite completion of sets 
and forgetful functor, cf. [18]. 

If r is an arbitrary profinite group, we may still define the first coho­
mology of X with coefficients in r as done by Morel in [18], p. 355. The 
functor X r+ Hom.s(X0 , f) is represented inS by a profinite space Ef 
given in degree n by Ern = rn+l, then+ 1-fold product of r. We define 
the 1-cocycles Z~ts(X; r) to be the set of continuous maps f : X 1 --+ r 
such that f(dax)f(dzx) = f(d 1x) for every x E X 1 . The functor X r+ 
Z~ts(X; f) is represented by a profinite space Br = Ef jr. Furthermore, 
there is a map !5 : Hom5(X, Ef) --+ Z~ts(X; f) ~ Hom5(X, Bf) which 
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sends f: Xo--+ r to the 1"cocycle X H r5f(x) = f(dox)f(dlx)- 1 . We de" 
note by B~ts(X; f) the image of r5 in Z~ts(X; f) and we define the pointed 
set H~ts(X,f) to be the quotient Z~ts(X;f)/B~ts(X;f). Finally, we de­
fine woX to be the coequalizer in [ of the diagram d0 , d1 : X 1 =+ X 0 . 

The profinite fundamental group of X is defined via covering spaces 
in the spirit of Grothendieck, see [20]. There is a universal profinite 
covering space (X, x) of X at a vertex x E X 0 . Then w1 (X, x) is defined 
to be the group of automorphisms of (X, x) over (X, x). It has a natural 
structure of a profinite group as the limit of the finite automorphism 
groups of the finite Galois coverings of (X, x). 

The collection of vertices and morphisms between covering spaces 
over different vertices of X defines a profinite fundamental groupoid 
IIX. 2 A profinite local coefficient system M on X is a functor from IIX 
to profinite abelian groups such that the action ofw1 (X,x) on M(x) is 
continuous. The cohomology of X with coefficients in M is then defined 
as the cohomology of the complex homrrx((X,- ), M) of continuous 
natural transformations. For any further details, we refer the reader to 
[20]. 

Definition 2.1. A morphism f: X--+ Yin Sis called, 
(1) a weak equivalence if the induced map f* : wo(X) --+ w0 (Y) is an 
isomorphism of pro finite sets, f* : w1 (X, x) --+ w1 (Y, f ( x)) is an isomor­
phism ofprofinite groups for every vertex x E Xo and f* : H~ts(Y; M) --+ 
H~ts(X; f* M) is an isomorphism for every local coefficient system M of 
finite abelian groups on Y for every q ~ 0; 
(2) a cofibration iff is a level-wise monomorphism; 
(3) a fibration if it has the right lifting property with respect to every 
cofibration that is also a weak equivalence. 

The following theorem has been stated in [20] (with the slight cor­
rection that in [20] the generating sets of fibrations and cofibrations had 
been chosen too small; the revised proof is given in [21], Theorem 2.3). 

Theorem 2.1. The above defined classes of weak equivalences, cofi­
brations and fibrations provide S with the structure of a fibrantly gen­
erated left proper simplicial model category. We denote the homotopy 
category by fl. 

2We will discuss the notion of profinite groupoids in the third section of the 
paper, in particular §3.3 and §3.4. The reader could jump to this section for 
precise definitions. 
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We consider the category S of simplicial sets with the usual model 
structure of [22]. We denote its homotopy category by H. Then the 
next result follows as in [20], Proposition 2.28. 

Proposition 2.2. 1. The completion functor () : S --+ S preserves 
weak equivalences and cofibmtions. 
2. The forgetful functor I · I : S --+ S preserves fibmtions and weak 
equivalences between fibmnt objects. 
3. The induced completion functor () : H --+ il and the right derived 
functor Rl · I : il --+ H form a pair of adjoint functors. 

Let R 1 be a fibrant replacement functor in S which exists by the 
general nonsense of fibrantly generated model structures. 

Definition 2.2. Let X be a pointed profinite space. We define the 
nth pmfinite homotopy gmup of X for n :::0: 2 to be the profinite group 

The homotopy groups in Definition 2.2 carry a natural profinite 
structure. In order to compute the homotopy groups of a profinite space 
X we take a fibrant replacement of X in S, and then take the usual 
homotopy groups of the fibrant simplicial set R1X. The main goal of 
this paper is to get a better understanding of this fibrant replacement 
in S. This is the task for the next section. 

But let us remark that, after defining weak equivalences and con­
structing the model structure on S, one gets that these homotopy groups 
detect weak equivalence, i.e. a map f in S is a weak equivalence of con­
nected profinite spaces if and only if 1r *(f) is an isomorphism of profinite 
(abelian) groups. 

§3. Profinite completion, fibrant replacements and pro-finite 
spaces 

3.1. Profinite completion revisited 

In the previous section, we have defined a set-theoretic profinite 
completion functor that sends a space to a profinite space and we have 
seen that every profinite space can be decomposed as a limit of simplicial 
finite sets, i.e. simplicial objects of F. But from a homotopy theoretic 
point of view this functor alone is not satisfactory. A finite space in 
homotopy theory is a simplicial set X that has only finitely many non­
trivial homotopy groups and those being non-trivial are finite groups. 
On the other side, a simplicial finite set and even a finite simplicial set, 
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i.e. one with only finitely many non-degenerate simplices, may have 
infinite homotopy groups. So being a profinite space in our terminology 
does not imply that the homotopy groups of the underlying simplicial set 
are profinite. But a profinite completion in terms of homotopy theory 
should be a functor that sends a space X in a universal way to a limit 
x 1 = limi xi or a cofiltering system of finite spaces xi such that each 
homotopy group of X f (as a simplicial set) is the limit of the finite 
homotopy groups of the xi. 

Remark 3.1. The reader should be aware of the overloaded termi­
nology which might be confusing at first glance. We stick to the common 
and well-known notion of a finite space for a simplicial set X that has 
only finitely many non-trivial homotopy groups all of which are finite 
groups. The reader should not confuse it with the notion of a profinite 
space for an object in S, even when the profinite space happens to be 
a simplicial finite set. But we will see in §3.6 that every profinite space 
is weakly equivalent in S to a pro-object of finite spaces. Hence in the 
end the two notions are related in the way that one may expect. 

Example 3.2. The simplicial circle S 1 = ~1 /8~1 is a simplicial 
finite set. But its fundamental group 7r1S 1 = Z is infinite. The point is 
that S 1 is not fibrant. So if we want to calculate its homotopy groups 
we have to replace it by a weakly equivalent fibrant simplicial set, for 
example the classifying space BZ. The profinite fundamental group of 
S1 as an object in S is Z, the profinite completion of Z. One way to 
calculate this fundamental group is to replace S 1 by a profinite space 
that is fibrant in s and weakly equivalent to S1 in .5, for example BZ. 
The set-theoretic profinite completion S --+ S functor of the previous 
section sends S 1 to itself because it is already a simplicial finite set. 
The homotopy-theoretic completion functor should rather send S 1 to 
BZ =limn BZjn. 

The first solution for the existence of a profinite completion functor, 
in the pro-homotopy category of connected spaces, has been given by 
Artin and Mazur in [1]. Let us quickly recall their construction. For a 
category C with small limits, the pro-category of C, denoted pro-C, has 
as objects all cofiltering diagrams X :I--+ C. Its sets of morphisms are 
defined as 

Hompro-C (X, Y) : = lim co lim Home (Xi, Y1 ). 
jEJ iEI 

The functor sending an object X of C to the constant pro-object with 
value X makes C a full subcategory of pro-C. The right adjoint of this 
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embedding is the limit functor lim: pro-C --+ C, which sends a pro-object 
X to the limit inC of the diagram corresponding to X. 

Let Ho denote the subcategory of connected spaces and Ho,fin be the 
subcategory of connected finite spaces in H. Artin and Mazur showed 
in [1] that, for every space X E H 0 , the functor 

Ho,fin --+ t:, F r-+ [X, F], 

is pro-representable in Ho,fin· The representing pro-object XAM E pro­
Ho,fin is called the (Artin-Mazur) profinite completion of X. Then Sul­
livan showed in [28] that the underlying diagram in Ho,fin of X AM has a 
limit xsu in H. Moreover, there are analogues of these functors for var­
ious subclasses of the class of finite groups, for which one replaces Ho,fin 
by its subcategory of connected finite spaces whose homotopy groups 
are all in this smaller class. For example, one could consider the class of 
finite p-groups for a fixed prime number p. 

The drawback of these constructions is that they are only obtained 
in the homotopy category or even its pro-category. A first rigidification 
of X AM has been given by Rector in [25]. For a connected space X, he 
defined a rigid pro-space that is weakly equivalent in pro-H to X AM. 

We will generalize this rigidification to arbitrary spaces and rein­
terpret it in the language of model categories via the model structure 
of Theorem 2.1 on the category S. As Example 3.2 already suggests, a 
good profinite completion functor from the homotopy point of view can 
be obtained by composing the set-theoretic completion S --+ S with a 
functorial fibrant replacement in S. So the model structure of Theorem 
2.1 is the crucial ingredient in order to get a rigid version of the full 
profinite completion functor. 

The idea to use S as the category in which a pro-p-completion 
should take place is due to Morel. He paved the way. Morel proved 
in [18] that there is a model structure on S for each prime number p in 
which the weak equivalences are maps that induce isomorphisms on Z/p­
cohomology. The fibrant replacement functor Rp of [18] yields a rigid 
version of the pro-p-finite-completion of Artin-Mazur and Sullivan. The 
homotopy groups for this structure are pro-p-groups being defined as 
above using Rp. 

Remark 3.3. Let L be a set of primes. A finite £-group is a finite 
group whose order is only divisible by primes of L. The methods of [20] 
and [21] provide a framework for a rigid model of the Artin-Mazur and 
Sullivan pro-L-completion. In this paper, we will always treat the case of 
the class of all finite groups. All statements on profinite completion can 
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be transferred to pro-L-completion by rephrasing the proofs in terms of 
finite £-groups instead of all finite groups. 

3.2. Completion of spaces versus completion of groups I 

Before we start with the construction, we consider the question in 
which way the set-theoretic completion of spaces interacts with the well­
known profinite completion of groups. Since this question will be a 
constant companion, we should be aware of the problem and should be 
equipped with some terminology. 

We will also denote the profinite completion of a group G by G. 
(The context will always make clear which completion is applied.) It is 
defined as the limit limu G /U over all open normal subgroups of G. It 
is equipped with a natural map G -+ G which is universal among maps 
from G to profinite groups. 

Given a pointed space X E S*, the homotopy groups of Definition 
2.2 of its profinite completion X E s* are profinite groups. Hence the 
induced map ntX-+ 1rtX factors through the group completion of 1rtX, 
i.e. there is a commutative diagram 

It is a fundamental question how the completions of spaces and of groups 
interact. For fundamental groups, we have the following result, which 
follows from the construction of the pro finite fundamental group of profi­
nite spaces via finite covering spaces, see [20] § 2.1. 

Proposition 3.4. Let X be a connected pointed simplicial set X. 
The pro finite group n 1 (X) is equal to the group completion of n 1 (X), 

i.e. <p 1 : ~ ~ n 1 (X) is an isomorphism of pro finite groups. 

For higher homotopy groups, the profinite Hurewicz theorem implies 
the next result, see [20] Proposition 2.31. 

Proposition 3.5. Let X be a pointed simplicial set. Suppose that 
nq(X) = 0 for q < n. Then nn(X) is the profinite group completion of 
1rn(X). 

Unfortunately, <t?t is not an isomorphism in general for t 2:: 2. A 
related phenomenon is well known for group completion and cohomology. 
In [27], this led Serre to call an abstract group G good if the induced map 
'ljJ : H~ts ( G; M) -+ H* ( G; M) between continuous and discrete group 
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cohomology is an isomorphism for every finite discrete G-module M. 
It turns out that the notion of a good group is also crucial for the 
completion of spaces and its homotopy groups. 

Let G be an abstract group and let BG be the simplicial classifying 
space of G given in degree n by a product of n copies of G. It has a 
profinite analogue BG in S which is given in degree n by the product 
of n copies of the profinite group G. We denote by BG E S the (set­
theoretic) profinite completion of the space BG. The universal property 
of profinite completion of spaces induces a commutative diagram 

BG~BG 

l/-
BG 

inS. As one might expect, the map cp: BG-+ BG is in general neither 
an isomorphism nor a weak equivalence. The difference between the two 
spaces comes from the difference of the completion of G as a set and its 
completion as a group. This difference is exactly on what Serre's notion 
of good groups is based on. For classifying spaces it can be rephrased 
as follows, see also [1] §6. 

Proposition 3.6. The canonical map cp : BG -+ BG of profinite 
spaces is a weak equivalence in S if and only if G is good. 

Proof. We have seen that n 1 (BG) ~ G is the group completion of 
n 1 (BG) ~ G. Moreover, the profinite fundamental group of BG is also 
equal to G and n1 ( cp) is an isomorphism. 

The crucial point where the properties of G come into play is the 
question wether cp induces an isomorphism in cohomology. For every 
finite G-module M, cp induces the sequence of maps 

between the usual group cohomology Hq(G; M) and the continuous co­
homology H~ts(G; M). This map is an isomorphism for every q if and 
only if G is good. Q.E.D. 

The same holds for Eilenberg-MacLane spaces K ( G, r) for r > 1 

and an abelian group G, i.e. the canonical map K0) -+ K(G, r) 
is a weak equivalence in S if and only if G is good. The proof of this 
statement is more complicated than the previous one, see [1] §6. 



Some remarks on profinite completion 425 

We will see below that by modifying slightly the notion of good 
groups by considering the action of the fundamental group on the higher 
homotopy groups, one obtains a sufficient condition such that the com­
pletion of spaces commutes with the one of groups for all homotopy 
groups. This result is due to Sullivan [28] and we will translate it to our 
setting via the following fibrant replacement functor inS. 

3.3. Simplicial groupoids 

The classifying space functor for groups given by the bar construc­
tion has a natural analogue W for simplicial groups, i.e. simplicial ob­
jects in the category of groups. If r is a simplicial group, let wr be the 
simplicial set with 

(Wr)n = r n X r n-1 X ... X ro. 

Then wr becomes a r-space if we definer X wr ---7 wr by: 

(hn, (gn,gn-1, ···,go)) f-----7 (hngn, gn-1, ···,go) 

for hn E r n. The classifying space Wr is defined as the quotient of Wr 
by the left r-action. In degree 0, Wro has just one element, so it is a 
reduced space, and in degree n it is given by 

(Wr)n = r n-1 X ... X ro. 

The functor W from simplicial groups to reduced spaces has a left ad­
joint, the free loop group construction r. For a reduced space X, i.e. 
X 0 consists of a single vertex, r X is the simplicial group given in degree 
n by the free group on the set Xn+1- s0 (Xn)· In fact, the pair of func­
tors w and r induce an equivalence between the homotopy categories 
of simplicial groups and of reduced spaces, cf. [12], V Corollary 6.4. 

In [8], Dwyer and Kan extended this equivalence of homotopy cat­
egories to the homotopy category of all spaces by considering simplicial 
groupoids instead of just simplicial groups. A groupoid r is a small cat­
egory in which all maps are invertible. For an object x of r, we denote 
the set of automorphisms of x by r(x,x). Dwyer and Kan define a sim­
plicial groupoid to be a simplicial object in the category of groupoids 
whose object sets are all equal to a given set of objects. In other words, 
a simplicial groupoid r consists of groupoids r n for every n ?: 0 and a 
functor r m ---7 r n for every ordinal number map e : [n] ---7 [m] such that 
all sets of objects Ob(r n) are equal to one set of objects Ob(r) and all 
the functors r m ---+ r n induce the identity map on Ob(r). We denote 
the category of simplicial groupo ids by sGd. We refer the reader to [12], 
V §7, for a careful discussion on simplicial groupoids. 
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There is a classifying space functor W : sGd -+ S that extends the 
one on simplicial groups. If r is a simplicial groupoid, the vertices of 
Wr are the objects of r and, for n 2: 1, Wr n is given by the set of 
sequences of maps in r 

where each 9i is a morphism in ri. 
The classifying space functor W is right adjoint to the loop groupoid 

functor r. For a simplicial set X, the loop groupoid r X on X is the 
simplicial groupoid whose object set is the set of vertices of X and whose 
morphisms are in degree n given by the free groupoid on generators 
[x] : x 1 -+ x 0 with x E Xn+l, subject to the relations soxo = 1x0 , 

x 0 E Xn. The face and degeneracy maps are defined in [12], V §7. 
Applying r and then W to a space X yields a space Wr X. Every 

n-simplex x of X determines a sequence of morphisms 

[d;,'- 1 x] [dox] [x] 
Xn ~ ... '----f Xl ~ Xo 

in r X. This defines a canonical map of spaces 

Ti: X-+ Wrx. 

Dwyer and Kan show that sGd has an important model structure. The 
consequence of their theorem that motivates our construction is that Ti 
is a weak equivalence and Wr X is a fib rant model of X in S. 

3.4. Simplicial profinite groupoids 

We would like to extend these ideas to simplicial profinite groupoids. 
Let us first recall the construction of free profinite groups on a profinite 
set, cf. for example [26] §3.3. 

The free profinite group on a profinite set S is a profinite group 
F(S) equipped with a canonical continuous injection [ : S -+ F(S) 
which topologically generates F(S), i.e. F(S) = ([(S)), and satisfies the 
following universal property: 

For any continuous map r.p : S -+ H to a profinite group H such 
that r.p(S) generates H topologically, i.e. H = (r.p(S)), there is a unique 
continuous homomorphism qJ: F(S) -+ H such that the diagram 
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commutes. 
If S is a finite set, then the free profinite group F(S) can be con­

structed by taking the free abstract group F(S) on S and then forming 

the profinite group completion of F(S), i.e. F(S) = F(S). If S is a 
profinite set given as an inverse limit s = limi si of finite sets si, then 
the free profinite group F(S) on Sis not just the profinite completion of 
the abstract free group on the underlying set S. But Ribes and Zalesskii 
show in [26], Proposition 3.3.9, that F(S) can be constructed as 

F(S) = limF(Si)· 
" 

Now let X be a reduced profinite space. We define its free profinite 
simplicial loop group to be the simplicial profinite group r X, i.e. sim­
plicial object in the category of profinite groups, that is given in degree 
n by the free profinite group on the profinite set Xn+l - s0 (Xn). The 
classifying space functors W and W are defined for simplicial profinite 
groups in exactly the same way as above for simplicial groups. The only 
difference is that they have values in the category of profinite spaces. 
Moreover, W is the natural right adjoint to the free profinite loop group 
functor r. 

For a non-reduced profinite space, we need a notion of a free sim­
plicial profinite groupoid on X that extends the free simplicial groupoid 
on spaces. Therefore, we make the following definitions, see also [18], 
p. 367. We call a groupoid r finite, if the set of objects of r is finite 
and, for each object x, the set of automorphisms r(x, x) of x is a finite 
group. We call r a profinite groupoid if the set of objects of r is profi­
nite and, for each object x, the set of automorphisms r(x, x) of x is a 
profinite group. The profinite completion r of a groupoid r is the limit 
as a groupoid of the filtered system of its quotient groupoids which are 
finite groupoids. 

A simplicial profinite groupoid is a simplicial groupoid r in the above 
sense such that each r n is a profinite groupoid. The profinite comple­
tion functor from simplicial groupoids to simplicial profinite groupoids 
is defined by forming the profinite completion of groupoids in each di­
mension. 

If X is a simplicial finite set, we define the free profinite groupoid 
r X on X as the profinite completion of the free groupoid on X. If X is 
a profinite space, X is canonically isomorphic to the limit of simplicial 
finite sets limR X/ R. We define the free profinite groupoid f X on X as 

rx := limf(X/R). 
R 
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The classifying space functor W on simplicial profinite groupoids is de­
fined in the same way as for simplicial groupoids. If r is a simplicial 
profinite groupoid, then Wr is a profinite space. The canonical map 77 
defined for spaces, has a profinite analogue f) for any profinite space X. 
It is defined as the limit of maps 

f)/R: X/R-+ WrXjR 

for each open equivalence relation Ron X, i.e. 

f) = lim f) I R : X -+ wf' X. 
R 

It is possible to define a model structure on simplicial profinite groupoids 
as for simplicial groupoids and show analogues of Theorem 2.5 and The­
orem 3.3 of [8]. But for our purposes we need only a small piece of 
the cake. The significant fact for us is that these constructions produce 
fibrant profinite spaces. 

Proposition 3. 7. Let r be a simplicial pro finite group. 
( 1) The underlying pro finite space of r is fibrant in S. 
(2) The profinite spaces Wr and Wr are fibrant inS. 
(3) The quotient map Wr-+ Wr and every principal r-bundle map is 
fibration in S. 

Proof. All the assertions follow from the decomposition of simpli­
cial objects into their tower of coskeleta and the description of the gener­
ating sets of fibrations P and trivial fibrations Q in the model structure 
of S given in [21], p. 1027. The nth coskeleton cosknY of a profinite 
space Y is given in degree m by 

(cosknY)m = Hom(skn~m, Y) = lim Yk. 
[k]-+[m],k:'::n 

We observe that when Y is a profinite space, the usual construction of the 
coskeleton of Y inherits a natural profinite structure from Y. Moreover, 
the profinite space Y is isomorphic in S to the limit limn cosknY of its 
coskeleta. Since the limit of a tower of fibrations is again a fibration, 
the map Y-+ *is a fibration if the maps coskn+ly-+ cosknY for every 
n :2': 2 and cosk2 Y -+ * are fibrations. 

Recall from [21], Theorem 2.3, that the prototype of a fibration in 
S is the canonical map 

of homotopy orbits under a finite group Jr where M is a finite Jr-module 
and L(M, n) = W K(M, n) is the contractible space defined above asso­
ciated to the simplicial group K(M, n). This extends immediately to a 
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profinite group 1r and a continuous profinite 1r-module M using Propo­
sition 3.8 below and the lifting property as in the proof of Theorem 2.3 
in [21]. 

So let us start with a simplicial finite group r and consider the sim­
plicial finite set Wr. We know that the underlying simplicial finite set 
of wr is fibrant ins and that the collection { coskn Wr}n is a Postnikov 
tower for Wr. The homotopy groups of Wr satisfy 

for n 2 0. These groups are finite groups, since r is a simplicial finite 
group. We recall that 1rnr is equal to the nth homology Hn(Nr) of the 
normalized complex Nr, Nrn = n?=1Ker(di: rn -t rn_I), which is a 
complex of finite groups with finite homology groups. Let 1ri = 1ri wr 
denote the ith homotopy group of Wr. The abelian group 1r n is a 7r1-
module for every n 2 2. Moreover, Wr is a minimal fibrant space and 
[12], V Corollary 5.13, shows that for every n 2 2 there is a pullback 
square 

(1) 

The map kn is called the k-invariant. It fits into a commutative diagram 

(2) coskn+l wr _____,.. K(1rn, n + 1) 

l_~ l 
coskn Wr ~ B1r1. 

Viewed as a relative cocycle in zn+ 1 ( coskn Wr; 1r n) the map kn corre­
sponds to the map that assigns to every n + 1-simplex skn6_n+l-+ wr 
the corresponding element in 1r n = 1r n wr. Since 

q: E1r1 X1r 1 L(7rn, n + 1) -+ E1r1 X1r 1 K(1rn, n + 1) 

is a fibration in S and since fibrations are stable under pullbacks, we 
conclude that each coskn+l wr -+ coskn wr is a fibration in s for n 2 
2. Moreover, cosk2 wr -t * is equal to B1r1 -t *, another generating 
fibration in S. Thus wr is a fibrant object inS. 

Now let r be a simplicial profinite group. Then r is isomorphic 
as a simplicial profinite group to the limit limu r /U of its simplicial 
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finite quotient groups r jU where U runs through the simplicial profinite 
subgroups of r such that Un is an open normal subgroup of r n for each n. 
Moreover, since r is a simplicial group, all the constructions we applied 
commute with this limit. For, as we have remarked above, coskn Wr 
is the limit of the coskn(W(r /U)). Moreover, the normalized complex 
Nr is the limit of the normalized complexes Nr jU and so is a complex 
of profinite groups. The homology Hn(Nr) commutes with this limit 
as well and we get that Kn = KnWr = Hn_1(Nr) is the limit of finite 
groups Kn/U := Hn-1 (Nr /U). Hence the fundamental group 1r1 is the 
inverse limit of the finite groups 1rl/U and the 1r1-module Kn, for n :::=: 2, 
is the limit of the finite 1rl/U-modules Kn/U. This implies that each Kn 
is a continuous profinite 1r1-module. Hence the k-invariant kn becomes 
an element in the group of continuous cocycles and corresponds to a 
map coskn Wr --+ K(Kn, n + 1) over B1r1 inS. So diagram (1) for the 
simplicial profinite group r is in fact a diagram inS. Since q is again a 
fibration inS, the map of profinite spaces coskn+l Wr--+ coskn Wr is a 
fibration in S for n :::=: 2. Similarly, cosk2 Wr = B1r1 --+ * is a fibration 
inS and we conclude as above that Wr is a fibrant object inS. 

A similar argument applied to the relative coskeleton functor shows 
that wr --+ Wr is a fibration ins. Hence wr is also a fibrant profinite 
space. Furthermore, Wr classifies principal r-bundles in s, i.e. every 
principal r-bundle E --+ B is a pullback of wr --+ Wr via some clas­
sifying map B --+ Wr in S. Hence E --+ B is also a fibration in S. In 
particular, the map r--+ * is a principal r-bundle and hence a fibration 
inS. Q.E.D. 

It remains to generalize this result to simplicial profinite groupoids. 
If r is a profinite groupoid, a profinite module M over r is a functor 
from r to the category of abelian profinite groups such that the profinite 
group r(x, X) acts continuously on the profinite abelian group M(x) for 
every object x of r. Given such a module M and an integer n :::=: 0, 
the Eilenberg-MacLane object K(M, n) is the profinite space which has 
as k-simplices the pairs ( u, v) such that u is a k-simplex x 0 --+ x1 --+ 
... --+ Xk of the profinite nerve Br and v is a k-simplex of the profinite 
Eilenberg-MacLane space K(M(x0 ), n), see [7], 1.2 (iv). There is the 
forgetful map K(M, n)--+ Br inS. An example is given by the profinite 
fundamental groupoid II1X of a profinite space X. The objects of II1X 
are the vertices of X and the higher homotopy groups define a profinite 
module IInX over rrlx defined by sending X E Xo to the profinite 
1r1(X,x)-module IInX(x) = Kn(X,x). 
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Proposition 3.8. A map f : X -t Y is a weak equivalence in S 
if and only if the induced maps f 0 : H 0 (Y; S) -t H 0 (X; S) for every 
profinite set S, f 1 : H1ts(Y; f) -t H1ts(X; f) for every every profinite 
group r and f* : H~ts(Y; M) -t H~ts(X; f* M) is an isomorphism for 
every continuous local coefficient system M of profinite abelian groups 
on Y for every q;:::: 0. 

Proof. From H 0 (X; S) = Home(Ko(X), S) for every finite set S, 
we conclude that Ko(f) is an isomorphism if and only if H 0 (f; S) is an 
isomorphism for every profinite set S. So we can assume X andY are 
connected. From [20], Lemma 2.9, we get that 1f1 (f) is an isomorphism 
if and only if H1tsU; r) is an isomorphism for every finite group r. 
Hence the if-part of the assertion is proved. It remains to show that the 
statement extends from finite to profinite coefficients. This can be shown 
using a spectral sequence that relates local cohomology with finite and 
with profinite coefficients by noting that continuous cohomology can be 
expressed in the following way by homotopy groups of mapping spaces. 
For any profinite module M over II= II1X, there is an isomorphism 

where 1fq denotes the usual homotopy group of the simplicial mapping 

space homS/BII(X,K(M,n)) of maps inS over BIT. For an arbitrary 
profinite group r there is a bijection of pointed sets 

Then we can construct a Bousfield-Kan spectral sequence as in [6], 
Proposition 2.9., that yields the comparison of coefficients. Q.E.D. 

Proposition 3.9. Let r be a simplicial profinite groupoid. The 
pro finite classifying space wr is fibrant in s. 

Proof. The proof is basically the same as for a simplicial profinite 
group. We start with a simplicial finite groupoid r and let II1 be the 
fundamental finite groupoid of Wf. We denote by IIn the finite II1-

module of Wf defined as in the example above. We know that the 
underlying simplicial set of wr is a fibrant object in s such that, for 
every object x, the profinite space wr(x, X) is minimal fibrant in S. 
Together with the theory of Postnikov towers this implies that there is 
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a pullback square of simplicial finite sets 

(3) 

The k-invariant kn is given as a relative cocycle in zn+l ( coskn ~T; IIn) 
over BII1 as the map that assigns to every n+1-simplex w: skn,6_n+l--+ 
Wf the corresponding element in IIn(w(O)) = nn(Wr, w(O)). It follows 
from the definition of weak equivalences and the lifting properties that 
the map q on the right is contained in the saturation of the generating 
set p of fibrations in S. Hence the map coskn+l wr --+ coskn wr is a 
fibration inS for n 2: 2. Moreover, cosk2 Wf is BII1 which is fibrant in 
S. Hence wr is a fibrant profinite space. 

For a simplicial profinite groupoid r, we observe again that all dia­
grams and objects involved commute with the profinite structure of r. 
Hence we obtain pullback diagrams inS. Since the map q in diagram 
(3) is contained in the saturation of the generating fibrations of S for 
profinite II1 and IIn by Proposition 3.8, we can conclude that all maps 
in the tower of coskeleta of wr are fibrations in S. This finishes the 
proof Q.E.D. 

Remark 3.10. Note that the arguments above do not, of course, 
show that every profinite space, whose underlying simplicial set is fi­
brant in S, is also fibrant as an object in S. In the proofs of the two 
propositions we have used very special properties of the profinite space 
Wf. In particular, we used the minimality of the functor W and that 
the homotopy groups of wr (or rather its underlying simplicial set) 
commute with the limit structure of r as a simplicial profinite group or 
groupoid. As we pointed out at numerous places, the last property is 
not satisfied by a general profinite space. 

3.5. A fibrant replacement functor in S 
As indicated by Morel for pro-p-completion of spaces in [18], §2.1, 

p. 367, the constructions above yield an explicit fibrant replacement 
functor in S. This idea is based on the work of Quillen in [23] and of 
Rector in [25]. 

First, let X be a reduced simplicial finite set and let f X be its free 
simplicial profinite loop group. Its profinite classifying space Wf X is 
a fibrant pro finite space by Proposition 3. 7 and is equipped with the 
canonical map f! : X --+ Wf X. 
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Second, let X be an arbitrary simplicial finite set and let r X be its 
free simplicial profinite loop groupoid. The profinite classifying space 
Wf' X is fibrant inS by Proposition 3.9 and is equipped with the canon­
ical map fj : X -+ Wf' X in S. If X is an arbitrary profinite space, 
it is isomorphic in S to the limit limR X/ R where R runs through the 
simplicial open equivalence relations on X. Its free simplicial pro finite 
groupoid is f' X = limR f'(X/ R). Then we apply W to get a fibrant 
profinite space RtX equipped with a canonical map inS 

fj : X -+ RtX := Wr X =lim Wr(X/ R). 
R 

Since the construction of fj is natural in X, the following theorem justifies 
to call RtX a functorial fibrant replacement of X. 

Theorem 3.11. Let X be a profinite space. The map fj : X -+ 
Wf' X is a trivial co fibration in S and Wf' X is a fibrant pro finite space. 

Before we start the proof, we need the following fact about simplicial 
groupoids due to Goerss and Jardine, cf. [12], V §7, pp. 316-317. Let 
r be a simplicial groupoid. Picking a representative X E [x] for each 
[x] E Jrof, defines a map of simplicial groupoids 

z: u r(x, x) -+ r 
[x]E1ror 

from the disjoint union of simplicial groups f(x, x) tor. This map is not 
only a weak equivalence of simplicial groupoids but U[x]E1ror f(x, x) is a 
deformation retract of r. In particular, the map i is a homotopy equiva­
lence of simplicial groupoids, see [12], V §7, pp. 316-317, for a definition 
of a groupoid homotopy. We will need the following consequence for the 
completion of a groupoid. 

Lemma 3.12. Let r be a simplicial groupoid with a finite set of 
objects and let r be its profinite completion. Then, for any choice of 
representatives x E [x] for [x] E Jrof = Jrof', the induced map 

i: u r(x,x) -+f' 
[x]E1ror 

is still a homotopy equivalence of simplicial groupoids. 

Now we can start the proof of Theorem 3.11. 

Proof. 
each level. 
sition 3.9. 

It is clear that fj is a cofibration, i.e. a monomorphism in 
That Wr X is a fibrant profinite space follows from Propo­
In order to show that it is a weak equivalence in S we can 
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assume that X is a simplicial finite set. For, ft is defined as the limit of 
the maps ft/ R: X/ R-+ Wf'(X/ R). If we show that each ft/ R is a weak 
equivalence, then the homotopy invariance of limits in S, Proposition 
2.14 in [20], implies that ft is a weak equivalence inS as well. 

So let X be a simplicial finite set. The set of objects Ob(f X) is 
equal to the set of vertices X 0 of X. Since this set is finite, we also 
have Ob(r X) = X 0 and 1r0 r X = 1r0X. Since the functor W preserves 
disjoint unions, there is a commutative diagram in S 

U[x]E1roX Xx _____. U[x]E1rof'X W(f' X(ft(x), ft(x))) 

! !ww 
x -------~ wtx 

where Xx denotes the connected component of X corresponding to x. 
By Lemma 3.12, the vertical map ion the right hand side is a homotopy 
equivalence of simplicial groupoids. As explained in [12], V Proof of 
Theorem 7.8, this implies that W(i) is a homotopy equivalence of sim­
plicial sets. Hence W(i) is also a weak equivalence in S by invariance 
of fundamental groups and cohomology under homotopy. Since the left 
vertical map is a weak equivalence, we conclude that it suffices to prove 
the assertion for each vertex of X separately. Thus we can assume that 
X is a reduced simplicial finite set. 

We know from [12], Proposition 6.3, that 77 : X -+ Wf X is a weak 
equivalence in S. To be able to deduce from this a statement about ft 
we have to take into account the effect of profinite completion. 

For this proof only, we will use the notation 7hX to denote the 
profinite fundamental group of X considered as an object in S to dis­
tinguish it from its fundamental group as an object in S. We know 
that 7] induces an isomorphism of fundamental groups of simplicial sets 
1r1X ~ 1r1 Wr X= 1ro(f X). The profinite fundamental group 7T1X of X 
is the profinite completion of the fundamental group of X as an object 
in S by Proposition 3.4. Similarly, the profinite fundamental group of 
Wf' X is just the completion of 1r1 Wf X, since 1r0 commutes with filtered 
inverse limits of simplicial finite groups and 

1f1 Wf' X= 1rof' X= lim 7ro(f X)/U = lim(1r1X)jU. u u 

Hence ft induces an isomorphism on profinite fundmental groups. 
It remains to show that ft induces an isomorphism on cohomology 

with finite local coefficients. Since X is reduced, finite local coefficient 
systems on X are just finite discrete 7T1X-modules. If f' a simplicial 
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profinite group and M is a continuous discrete 7Tof-module, the contin­
uous cohomology of f with coefficients in M is given by 

where the limit is taken over all open normal subgroups of r and M7roU 

denotes the module of fixed elements under 1r0 U. Furthermore, if r is a 
simplicial group, the profinite group completion map r ---+ r induces a 
canonical map 

for every finite discrete 1r0f-module. As for groups, this map is not 
an isomorphism in general. Quillen calls the simplicial group r good, 
if this map is an isomorphism for every finite discrete 7Tof-module, see 
[23]. Using a spectral sequence argument, one can show that a simplicial 
group r is good if r n is a good group in the sense of Serre for all n. 

Coming back to the proof of Theorem 3.11, the crucial observation 
is that free groups are good, cf. [23], Proposition 3.1. Since r Xn is by 
definition a free group in each degree, we conclude that r X is a good 
simplicial group. Thus we get an isomorphism 

H;ts (f X; M) --'=-+ H* (f X; M) 

for all continuous finite 1r0fX = 7r1X-module M. We have seen above 
that the map X ---+ Wr X is a weak equivalence of simplicial sets and 
hence H* (r X; M) = H* (Wr X; M) = H* (X; M). Finally, when M 
is finite and X is a simplicial finite set, the continuous cohomology 
H;ts(X; M) of X agrees with the cohomology H*(X; M). This com­
pletes the proof that X ---+ Wf' X is a weak equivalence of profinite 
spaces. Q.E.D. 

3.6. Relationship to the work of Artin-Mazur, Morel and 
Sullivan 

In the previous subsection we have constructed a functorial fibrant 
replacement in S. For a simplicial finite set X E S it is given as the 
map TJ: X---+ Wf'X. Now fX is by definition given as the (simplicial) 
profinite groupoid completion of the free simplicial groupoid r X. Hence 
f X is by definition a limit of simplicial finite groupoids. By taking the 
classifying space functor W we get a decomposition Wr X as a limit of 
simplicial finite sets fibrant in S 

Wf'x =lim TV((fX)/U) 
u 
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where U runs through the simplicial normal subgroupoids of r X such 
that the quotient (f X) /U is a simplicial finite groupoid. As we have 
seen before, each of the W((fX)/U) is fibrant inS and hence inS. 
Moreover, the homotopy groups of each W(f X)/U are finite by Lemma 
3.13 below. So after taking Postnikov sections cosknW(fX)/U we get a 
decomposition into a limit of finite spaces which are also simplicial finite 
sets, i.e. a weak equivalence in S 

X-=-+ limcoskn(W((fX)/U)). 
n,U 

Lemma 3.13. Let X be a fibrant simplicial finite set. Then its 
homotopy groups nn(X, x) are finite groups for every n ~ 0 and every 
vertex x. 

Proof. The nth homotopy group 7rn(X, x) of a fibrant simplicial 
set X is defined to be the set of homotopy classes of maps a : b. n -+ X 
(relative ab..n) which fit into diagrams 

Since X is fibrant and b. n cofibrant, the set of homotopy classes of maps 
is just the quotient Horns (b. n' X) I rv of maps modulo the simplicial 
homotopy relation. But since the set Xn of n-simplices of X is finite by 
our assumption and Homs(b..n,X) = Xn, there are only finitely many 
maps and 7rn(X,x) is a finite group. Q.E.D. 

Now let X be an arbitrary profinite space. Then the previous con­
struction yields a decomposition of X as a limit of finite spaces 

X-=-+ Xj := lim coskn(W((f(X/ R)/U))). 
n,R,U 

Since the groups 7rk W(f(X/ R)/U) are finite, their higher lim-terms van­
ish and a spectral sequence argument using sequence (3) and Lemma 2.18 
of [20] shows for every k ~ 0 

where 7rkX on the left denotes the profinite homotopy group of the 
profinite space X. 
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In particular, we have constructed a functor from S to the category 
of pro-objects of finite spaces defined by 

X f--7 { coskn W(f(X/ R)/U)}n,R,U. 

By applying this to the set-theoretic completion X of a space X, we get 
a functor 

F : S f--7 S --+ pro - Sfin 

where Sfin is the subcategory of S of finite spaces. We can consider this 
functor on the homotopy level 

1i --+ il --+ pro - 1-lfin. 

It follows immediately from the results on profinite spaces and [1], The­
orem 4.3, that F is isomorphic to the Artin-Mazur completion functor. 
Moreover, this implies that the fibrant replacement of X in S is a rigid 
model for the Sullivan completion of X, i.e. that IXtl is isomorphic to 
xsu in 1-l. Hence X f--7 X f = lim F(X) provides a rigid model for the 
profinite completion of a space X. 

3.7. Completion of spaces versus completion of groups II 

We return to the question how completion of spaces and groups are 
related to each other. We have seen that this a subtle problem. It 
turns out that after modifying slightly the notion of good groups for 
higher homotopy groups, one gets a sufficient condition such that the 
completion of spaces commutes with the one of groups. This result is 
due to Sullivan. We state it in our terminology to complete the picture 
for the reader. 

Following [28], for a pointed space X, we call1r1 := 1r1X a good fun­
damental group, if it is a good group and has finite cohomology groups, 
i.e. if the map H~ts (it1; M) --+ Hi ( 1T1; M) is an isomorphism and if these 
groups are finite for all finite 1r1-modules M and all i ~ 0. 

Let 1Tn := 1TnX, n ~ 2, be a higher homotopy group of X. It carries 
a canonical action of 1r1. Let P be the filtered set of finite 1r1 -quotients 
of 1Tn· We denote by 7T;;: 1 := limQEP 1Tn/Q the 1T1-completion of 1Tn· This 
is, in particular, a profinite group on which 1T1 acts. The 1r1-module 1Tn 
is called a good higher homotopy group if 

H~ts(7T~';A) ~ Hi(1Tn;A) 

and if these groups are finite for all finite coefficient groups A and all 
i ~ 0. With these definitions there is the following result of Sullivan [28], 
Theorem 3.1. It holds for our rigid model X f of the profinite completion 
of X, since X f is isomorphic to xsu in 1-l. 
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Theorem 3.14. Let X be a connected pointed space. If X has 
a good fundamental group and good higher homotopy groups, then the 
canonical map !.f't : HtX -+ HtX is an isomorphism of profinite groups 
for every t. 

Sullivan shows that groups which are commensurable with solvable 
groups in which every subgroup is finitely generated are good fundamen­
tal groups and that finitely generated abelian groups are good higher 
homotopy groups. In particular, we have the following immediate con­
sequence of the previous theorem. 

Corollary 3.15. Let X be a space whose homotopy groups are all 
finite. Then profinite completion induces an isomorphism HtX = HtX 
for every t ~ 0. 

3.8. Completion of nilpotent spaces 

There is another condition for the homotopy groups of X that allows 
to get our hands on the relation between n nX and n nX. Therefore let X 
be a nilpotent space. This means that n1X is a nilpotent group and the 
action of n1X on the abelian groups HnX for n ~ 2 is also nilpotent, i.e. 
nnX has a finite filtration such that n1X acts trivially on each quotient 
of the filtration. 

So let X be a connected nilpotent space and let p be a prime num­
ber. Paul Goerss has shown in [11], Proposition 5.9, that the homotopy 
groups of the pro-p-completion Xp of X, i.e. the fibrant replacement of 
X in the Z/p-model structure on S of Morel [18], fit in a splittable short 
exact sequence 

---P " A 

0-+ HnX -+ HnXp-+ Lf(nn-lX) -+ 0 

for every n ~ 1. Here ]}{ denotes the first left derived functor of the 
pro-p-group completion functor, which can be defined for non-abelian 
groups as in [11], Definition 5.6, via Eilenberg-MacLane spaces. 

This result has independently been proven for the full profinite com­
pletion in terms of pro-spaces by Rector in [25], Theorem 5.11, for a 
slightly restricted class of connected nilpotent spaces. In loc. cit., Rec­
tor shows that there is a natural short exact sequence for every n ~ 1 

0-+ ;;:x-+ HnXf-+ Ll(Hn-lX)-+ 0 

where L1 denotes the first left derived functor of the pro-p-group com­
pletion functor. 

Another nice property of a connected nilpotent space X is that its 
profinite homotopy type is determined by its pro-p-types. For any space 
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X there is a canonical natural map 

This map is an equivalence if X is nilpotent and of finite type by [28], 
p. 53. 

§4. Profinite G-spaces 

We turn our attention to the equivariant setting. Let G be a fixed 
profinite group and let S be a profinite set on which G acts continuously, 
i.e. there is a continuous map f.L : G x S --+ S satisfying f..l( e, s) = s and 
f.L(gh, s) = f.L(g, f.L(h, s)) for all s E S, g, h E G and e E G being the 
neutral element. In this situation we say that S is a profinite G-set. If 
X is a profinite space and G acts continuously on each Xn such that 
the action is compatible with the structure maps, then we call X a 
profinite G-space. We denote by Sc the category of profinite G-spaces 
with G-equivariant maps of profinite spaces as morphisms. 

While a discrete G-space Y is characterized as the colimit over the 
fixed point spaces yu over all open subgroups, a profinite G-space X is 
the limit over its orbit spaces XjU. More explicitly, for an open and 
hence closed normal subgroup U of G, let X/U be the quotient space 
under the action by U, i.e. the quotient X/ ~ with x ~ y in X if both 
are in the same orbit under U. 

Lemma 4.1. Let G be a pro finite group and X a profinite space with 
a G-action. Then X is a profinite G-space if and only if the canonical 
map cj; : X --+ limu X/U is an isomorphism, where U runs through the 
open normal subgroups of G. 

Proof. It suffices to prove this for each Xn, so let X be a profinite 
G-set. The equivalence relation on X induced by the action of U is an 
open and closed relation, see e. g. [5] Chapter I-III for the topological 
results we use. Hence the quotients X/U are again Hausdorff spaces. 
Since the cofiltered limit of compact Hausdorff spaces is so again, we 
deduce that the limit limu X/U is a totally disconnected compact Haus­
dorff space. Now each map X--+ X/U is surjective and hence the image 
of cj;: X--+ limu X/U is dense. Since X is compact and limu X/U is a 
compact Hausdorff space, cj;(X) is already closed and cj; is an open and 
surjective map. For the injectivity, let x =J y be two distinct points in X. 
Since X is Hausdorff, there is an open subset V of X that contains x but 
does not contain y. The preimage f.L; 1 (V) of V under the continuous 
map f.Lx : G --+ X, g f--7 f.L(g, x) is an open subset of X. Now G being 
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a profinite group, the open normal subgroups of G form a basis of the 
topology on G. Hence p,;;:- 1 (V) contains at least one open normal sub­
group U. Then y is not in the orbit Ux of x under U. Hence ¢(x) # ¢(y) 
in limu X/U. This shows that ¢is a continuous bijection between com­
pact Hausdorff spaces and hence¢ is a homeomorphism. Q.E.D. 

Moreover, every pro finite G-set is in fact a limit of finite G-quotients 
by [26], Lemma 5.6.4. This yields an analogue decomposition of a profi­
nite G-space. 

Lemma 4.2. Let G be a profinite group and X a profinite G-space. 
There is G-invariant decomposition of X as an inverse limit of simplicial 
finite G-sets 

X= lim Xi in Sc. 
i 

Proof. Again, it suffices to prove the assertion for a profinite G-set 
X. This is done in Lemma 5.6.4 of [26]. The idea is to show that for 
any open equivalence relation R on X, considered as an open subset of 
X x X, there is a G-invariant open equivalence relation S <:;; R. One 
defines S to be the intersection of all open subsets gR in X, i.e. 

s = n gR. 
gEG 

Using that G and X carry a profinite topology, one can show that Sis 
in fact an open subset of X x X. This implies that each quotient X/ Sis 
a finite G-set. Finally, one shows that X is equal to the limit lims X/ S 
as in the proof of the previous lemma. Q.E.D. 

In order to get a model structure on Sc one can find explicit sets 
of generating fibrations and trivial fibrations. They arise naturally by 
considering G-actions on the corresponding generating sets for the model 
structure on S. The following result has been proven in [21], Theorem 
2.9. 

Theorem 4.3. There is a fibrantly generated left proper simplicial 
model structure on the category of profinite G-spaces such that a map 
f is a weak equivalence (respectively fibration) in Sc if and only if its 
underlying map is a weak equivalence (respectively fibration) in S. A 
map f : X --+ Y is a cofibration in Sc if and only if f is a level-wise 
injection and the action of G on Yn- f(Xn) is free for each n ~ 0. We 
denote its homotopy category by He. 
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4.1. Equivariant completion 

Let G be a profinite group and X a simplicial G-set, i.e. a simplicial 
object in the category of G-sets (without any topological condition). We 
are going to construct a functorial completion such that the output is a 
profinite space with a continuous G-action, i.e. an object of S0 . 

Therefore, we start with a finite group F and a simplicial F-set Y. 
Let RF(Y) be the set of F-equivariant equivalence relations on Y with 
finite quotients, i.e. each R E RF is an F-invariant simplicial subset of 
Y x Y such that (Yn x Yn)/ Rn is finite. The limit XF := limRERF Y/ R 
is an F-invariant profinite completion. 

Now let G be again our profinite group and X a simplicial G-set. 
If we defined Xc in the same way as for F, the induced G-action on 
Xc would in general not be continuous. Instead, we first consider 
the quotient X/U by an open normal subgroup U of G. Via the just 
defined G /U-equivariant completion we obtain a profinite G /U-space ----(X/U)c;u· The limit over all open normal U is a profinite space with a 
continuous G-action. 

Definition 4.1. We define the profinite G-completion of X to be 

Xc := lil? (x]u)c;u 

where U runs through the open normal subgroups of G. 

It is equipped with a G-equivariant map rp : X -+ Xc and has the 
following expected universal property. 

Lemma 4.4. Let Z be a profinite G-space and let f : X -+ Z be 
a map of simplicial G-sets. Then there is a unique map j such that f 
factors as f = j o rp. 

Proof. Since Z is a profinite G-space it is isomorphic to limu Z /U 
by Lemma 4.1. Hence, by definition of Xc, we can assume that G is 
finite. Then Xc is equal to limRERc X/ Rand it becomes obvious that 
f factors uniquely through cp. Q.E.D. 

Remark 4.5. Boggi [2], [3] and Lochak [16] study also a G-completion 
functor for G-spaces. But in loc. cit. one starts with a discrete group G 
acting on a simplicial set X satisfying certain additional conditions. One 
obtains a profinite G-space in our sense where G is the profinite group 
completion of G (or a quotient of the full profinite completion). Here we 
start with a profinite group. The two approaches converge to a common 
result if G is a strongly complete profinite group. We will discuss this 
property below. 
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4.2. Discrete G-spaces 

Let G be a profinite group. Defining G-equivariant completion is 
more convenient when we require a natural assumption for the action 
of G on the spaces. So we restrict our attention to discrete G-spaces in 
the sense of [10]. A simplicial G-set is called a discrete G-space when 
the action of G on each set Xn equipped with the discrete topology is 
continuous and compatible with the face and degeneracy maps. Let Sdo 
be the category of such discrete G-spaces with G-equivariant maps as 
morphisms. We can simplify the profinite completion functor, when we 
restrict it to Sdo· We denote again by Ro(X) the set of G-invariant 
simplicial equivalence relations on X such that the quotient X/ R is a 
simplicial finite set. Then we get the following simplification. 

Proposition 4.6. Let X be a discrete G-space. Then the limit 
X(; := limRERa(X) X/ R is a profinite G-space and is isomorphic to the 

G-completion Xo of X of Definition 4.1. 

Proof. Since the G-action is compatible with the simplicial struc­
ture, it suffices again to prove the corresponding assertion for discrete 
and profinite G-sets. So let X be a discrete G-set. Every R E Ro is 
an open equivalence relation. Hence the continuous action of G on X 
induces a continuous action of G on the finite discrete sets X/ R. Thus 
(X(;) is the limit of continuous G-sets and hence it is itself a continuous 
G-set. So X(; is a profinite G-space. Moreover, it follows immediately 
from the construction that X(; satisfies the same universal property for 
G-equivariant maps from the discrete G-space X to profinite G-spaces 
as X0 . Thus there is a unique isomorphism X(;~ Xo in So. Q.E.D. 

Remark 4. 7. There is a model structure on Sdo constructed by 
P. Goerss in [10], Theorem 1.12, in which a map is a weak equiva­
lence (resp. cofibration) in Sdo if and only if it is a weak equivalence 
(resp. cofibration) in S. In particular, every discrete G-space is cofi­
brant. The relationship between G-equivariant completion functor and 
the functor that forgets the profinite structure on a profinite G-space is 
not as nice as in the non-equivariant case. The problem is that the un­
derlying set of a profinite G-space is not a discrete G-space. Moreover, a 
profinite G-space X is cofibrant if and only of the action is free on each 
Xn as in the case for S0 . Since all discrete G-spaces are cofibrant in the 
model structure of [10], cofibrations are not preserved by G-equivariant 
completion. So an analogue of Proposition 2.2 cannot be formulated for 
discrete and profinite G-spaces. 
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4.3. Strongly complete profinite groups 

Now we return to arbitrary G-spaces, but we require that G has an 
additional property. A profinite group G is called strongly complete in 
[26], if every subgroup of finite index is also openinG, or, in other words, 
if G = G as profinite groups. The profinite completion of an abstract 
group is itself strongly complete. But in general there are subgroups of 
finite index which are not open in the given topology. A discussion of 
this phenomenon is given in [26] §4.2. 

Serre has conjectured that every topologically finitely generated 
profinite group G is strongly complete, where topologically finitely gen­
erated means that G contains a dense finitely generated subgroup. He 
proved this conjecture for finitely generated pro-p-groups. Recently, 
Nikolov and Segal have proven the full conjecture for every finitely gen­
erated profinite group in [19]. The celebrated proof relies on the classi­
fication of finite simple groups. 

The implication of strong completeness, which shows why it is inter­
esting in this context, is the following. For a strongly complete profinite 
group G, every finite set S with a G-action is also a continuous discrete 
G-set. For, if s is an element in S and Gs the orbit of s under G in S, 
then G acts transitively on Gs and hence there is bijection G/Gs ~ Gs, 
where Gs denotes the stabilizer of s in G. Since Gs <:;; Sis a finite set, 
so is G / G" and, since G is strongly complete, G s is open in G. 

(One should note however that this does not imply that a strongly 
complete group is good in the sense of Serre. This is because the profi­
nite completion of G as a group is in general not equal to the profinite 
completion as a set. Hence the sets Hom£(G, S) and Homt(G, S) can 
still be different for a finite set S.) 

Hence when G is strongly complete, every simplicial finite G-set 
is a simplicial discrete G-set. So profinite completion of any G-space 
X can be defined more directly as in the case of discrete spaces. For 
any simplicial open G-invariant equivalence relation Ron X with finite 
quotients, the finite set Xn/ Rn is finite and a continuous G-set for the 
discrete topology. The proof of Proposition 4.6 above shows that Xc 
is equal to the limit limRERa(X) X/ R, where Rc(X) denotes the set of 
G-invariant simplicial equivalence relations on X such that the quotient 
X/ R is a simplicial finite set. 

Arithmetically interesting examples of strongly complete groups are 
the absolute Galois groups of finite fields. More subtle examples provide 
the Galois groups of p-adic local fields, since they are finitely generated 
by the work of Jannsen and Wingberg [15]. Nevertheless, the absolute 
Galois group of a number field is in general not strongly complete as 
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subgroups of finite index which are not open can be constructed in such 
groups. Another interesting example is provided by the Morava sta­
bilizer group of formal group laws in characteristic p by the work of 
Ravenel [24]. 

In order to understand the fundamental group of the G-completion 
of a space we recall the equivariant completion for groups. Let r be a 
group that is equipped with a left G-action f-L : G X r -t r such that 
t-L(g,/n2) = t-L(g,!I)f-L(g,/2) in r for every g E G and 11,12 E r. We 
define the G-equivariant group completion of r to be the limit of finite 
groups 

f'a := limr/Ua 
Uc 

where Ua runs through the normal subgroups of r of finite index which 
are invariant under the action of G. It is clear that r a is a profinite group 
with a G-action in the above sense. Since we restricted to the case that 
G is strongly complete, each rjUa is a finite and hence discrete G-group. 
Thus r a is a pro finite group with a continuous G-action and the map 
r -t f' a is universal for maps from r into groups with this property. 
An example for this construction is given by the profinite fundamental 
group of a G-space. 

Proposition 4.8. Let G be a strongly complete profinite group and 
X a simplicial G-set. The profinite fundamental group of Xa is equal 
to the G-equivariant completion of the fundamental group of X, i.e. 
the canonical map ( 1r1AX)a -t 1r1Xa is an isomorphism of pro finite G­
groups. 

Proof. The fundamental group of a profinite space is defined as the 
limit of the finite automorphism groups of the finite Galois coverings of 
X. Each covering inherits an action by G from X. Hence G also acts 
continuously on the finite automorphism groups. Their limit is the profi­
nite fundamental group of Xa by definition, but also the G-completion 
of the fundamental group 1r1X of the simplicial set X. Q.E.D. 

We equip the category of simplicial G-sets Sa with the model struc­
ture of [12] V §2. In this model structure a map f : X -t Y is a weak 
equivalence (respectively fibration) in Sa if its underlying map in S is a 
weak equivalence (respectively fibration); and f is a cofibration in Sa if 
f is a monomorphism and G acts freely on Yn- f(Xn) for each n ~ 0. 
There is the following partial analogue of Proposition 2.2. 

Proposition 4.9. Let G be a strongly complete profinite group. The 
forgetful functor 1·1 : Sa -t Sa preserves fibrations and weak equivalences 
between fibrant objects. 
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Proof. In both G-model structures the weak equivalences and fibra­
tions are determined by the underlying non-equivariant maps. The asser­
tion is then a consequence of the second part of Proposition 2.2. Q.E.D. 

4.4. G-equivariant fi.brant replacements 

Let G be again an arbitrary profinite group. We want to define 
an explicit fibrant replacement functor in the model structure on Sa 
of Theorem 4.3. After the discussion in the two previous sections one 
would expect that we had to significantly modify the construction for the 
fibrant replacement in S in order make it G-equivariant and continuous. 
But it turns out that the only necessary change is that we have to 
decompose X with respect to its G-invariant equivalence relations. The 
continuity comes for free (as we will see below, in the true sense of the 
word). 

Remark 4.10. We recall the following fact from [26], Remark 5.6.1. 
Let G be a profinite group acting continuously on a profinite set S. 
It induces a homomorphism G -+ Homeo(S) from G to the group of 
homeomorphisms of S. When we equip Homeo(S) with the compact­
open topology, this homomorphism is continuous if and only if the action 
of G on S is continuous by [5], X 3.4 Theoreme 3. If S is finite and 
discrete, the finite group Homeo(S) is just a discrete group. 

This implies the following crucial observation for free profinite groups. 

Lemma 4.11. Let G be a profinite group acting on a profinite set 
S. Then this action extends to a continuous action of G on the free 
profinite group F(S) on S. 

Proof. The universal property of F(S) implies two things. First, 
the action of G on S induces an action on F(S) since the continuous 
map t.p9 := i o g : S-+ F(S) induces a unique continuous group homo­

morphism cp9 : F(S) -+ F(S) such that the diagram 

commutes. Second, there is an equality Homeo(S) Aut(F(S)) be­
tween the space Homeo(S) and the space of continuous automorphisms 
of F(S) with compact-open topology. By Remark 4.10, the action of G 
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on Sis continuous if and only if the homomorphism G--+ Homeo(S) is 
continuous. By the same argument of [5], X 3.4 Theoreme 3, the action of 
G on Aut(F(S)) is continuous if and only if the induced homomorphism 
G--+ Aut(F(S)) is continuous. This shows the assertion. Q.E.D. 

We are now prepared for the fibrant replacement in Sc. Recall that 
when X is a reduced simplicial finite set, the first step in the construction 
of the fibrant replacement in S is to apply the free profinite loop group 
construction on X, which is the simplicial profinite group f X given 
in degree n by the free profinite group on the finite set Xn+l - soXn· 
Now Lemma 4.11 shows that when X is a simplicial finite discrete G-set, 
then r X is a simplicial profinite G-group. Hence the profinite classifying 
space Wr X is a profinite G-space and the canonical map fj : X --+ Wt X 
is a map in S0 . Since a map is a weak equivalence (respectively fibration) 
in Sc if its underlying map in S is a weak equivalence (respectively 
fibration), fj is a functorial fibrant replacement in Sc by Theorem 3.11. 

Now let X be an arbitrary simplicial finite set. In § 3.5, we took 
the free profinite loop groupoid f X on X. It inherits a G-action from 
X, where an action on a groupoid can be described as follows. Let r 
be a groupoid. A G-action on r is a G-action J.Lo on the set of objects 
of r and an action J.ll of G on the set of morphisms of r such that 
J.ll (g, 1112) = J.L1 (g, rd o J.L1 (g, 12) as morphisms of r for every g E G and 
all morphisms /1 and /2 of r. 

Since f X is the free profinite groupoid on X, the same argument as 
for the free profinite group on a set shows that the induced action of G 
on r X is in fact continuous, i.e. J.Lo and J.ll act continuously on the set 
of objects and morphisms of r X respectively. So the classifying space 
Wt X is again a profinite G-space whose underlying profinite space is 
fibrant. 

Finally, for an arbitrary profinite G-space X, we use that it is iso­
morphic in Sc to the limit limRaERa(X) X/ Rc of simplicial finite G-sets 
by Lemma 4.2, where Rc(X) denotes the set of simplicial G-invariant 
open equivalence relations on X. We construct the free simplicial profi­
nite groupoid on X by 

fX = lim f(X/Rc). 
RcERc(X) 

By the previous argument, G acts continuously on this free profinite 
groupoid. The application of the classifying space functor W yields a 
fibrant profinite G-space Wt X equipped with a canonical map 

fj: X--+ Wtx = lim Wr(X/ Rc). 
RcERc(X) 
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Since the construction of fJ is a natural in X, this yields a functorial 
fibrant replacement in Sc. Summarizing this discussion, we have proven 
the following result. 

Theorem 4.12. Let G be a profinite group and let X be a profi­
nite G-space. The map fJ : X ---t wf X is a weak equivalence in Sc. 
The pro finite G-space wt X is fibrant in s and Sc. Hence fJ defines a 
functorial fibrant replacement in Sc. 

Corollary 4.13. Let G be a profinite group and X ESc. There is 
a G-equivariant profinite completion functor that sends X to a limit of 
finite spaces which are simplicial finite G-sets: 

X H Xc H XJ,G := lim cosknW(f(X/Rc))/U ESc. 
n,Rc,U 
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