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Abstract. We show that the existence of rational points on smooth varieties

over a field can be detected using homotopy fixed points of étale topological

types under the Galois action. As our main example we show that the surjec-
tivity statement in Grothendieck’s Section Conjecture would follow from the

surjectivity of the map from fixed points to continuous homotopy fixed points

on the level of connected components. Along the way we define a new model
for the continuous étale homotopy fixed point space of a smooth variety over

a field under the Galois action.

1. Introduction

Let k be a field and X a variety over k. To find all k-rational points of X is an
important and often very difficult problem. Many techniques have been developed
to either prove the existence or non-existence of rational points. Recently, several
topological approaches have been established for example in [2], [15], [16], [24]. In
particular, Harpaz-Schlank showed in [11] that certain obstructions to the existence
of rational points can be formulated in terms of homotopy fixed points under the
Galois action.

In this paper we continue the independent approach in [17] and show that also the
existence of rational points can be detected via continuous homotopy fixed points
under the Galois action. As the main example and motivation for this approach we
briefly recall Grothendieck’s section conjecture which is one of the most important
open problems on rational points.

Let k̄ be an algebraic closure of k, G := Gal(k̄/k) and X be a geometrically
connected variety over k equipped with a geometric point x. Let Xk̄ be the lift
of X to k̄. Taking étale fundamental groups π1(−, x) = πét

1 (−, x) induces a short
exact sequence of profinite groups

(1) 1→ π1(Xk̄, x)→ π1(X,x)→ G→ 1.

If a ∈ X(k) is a k-rational point on X, then the functoriality of π1 induces a
continuous section σa : Gk → π1(X,x) of (1) which is well-defined up to conjugation
by elements in π1(Xk̄, x). Grothendieck’s Section Conjecture predicts that this map
has an inverse in the following case (see also [21] for more details on this conjecture).

Conjecture 1.1. (Grothendieck [10]) Let k be a field which is finitely generated
over Q and let X be a smooth, projective curve of genus at least two. The map
a 7→ [σa] is a bijection between the set X(k) of k-rational points of X and the set
S(π1(X/k)) of π1(Xk̄, x)-conjugacy classes of continuous sections Gk → π1(X,x).
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It is well-known that the map a 7→ [σa] is injective. Hence the conjecture is a
statement about the existence of rational points. The main result of this paper
is that the surjectivity of the map a 7→ [σa] would follow from the solution of a
homotopy limit problem in the spirit of the Sullivan Conjecture.

We now outline the main ideas of the paper. Let k be an arbitrary field with alge-
braic closure k̄, G := Gal(k̄/k) and X be a quasi-projective geometrically connected
smooth variety over k. A k-rational point a : Spec k → X induces a map of étale
homotopy types (Spec k)ét → Xét which is a section of the map Xét → (Spec k)ét

induced by the structure morphism. The pro-space (Spec k)ét is homotopy equiva-
lent to the classifying pro-space BG of G. Hence we can consider Xét as an object
over BG. Since spaces over BG are equivalent, in a sense to be made precise later,
to spaces with a G-action, we would like to form the homotopy fixed points XhG

ét

of Xét. The étale homotopy type functor then induces a natural map from the
set X(k) of k-rational points to the set of connected components π0(XhG

ét ). The
non-existence of homotopy fixed points of Xét would therefore be an obstruction
to the existence of rational points. We will show that this idea can also be used to
detect rational points.

In order to make this precise we have to specify a suitable model for the étale ho-
motopy type. We will use the rigid Čech étale type over k introduced by Friedlander
in [5]. We denote the resulting pro-space by X := (X/k)rét. It is weakly equivalent
to the usual étale topological type of [1] and [6]. The pro-space (Spec k/k)rét is
isomorphic to the classifying pro-space BG. Since G is a profinite group, we can
consider BG as a profinite space, i.e. an object in the category Ŝ of simplicial
profinite sets. Moreover, since X is smooth and connected, a result of Artin-Mazur
[1] shows that all its étale homotopy groups are profinite groups. This leads to the
construction of a fibrant profinite model Xpf of the étale topological type of X in
the category of profinite spaces over BG. Via this model we define the continuous
étale homotopy fixed points X hGpf of X over k.

The new model X hGpf for the homotopy fixed point space of X is one of the main
technical ingredients of the paper and is a key improvement compared to previous
approaches as in [11] where only a set of connected components of a potential XhG

is defined.
We continue the outline of ideas. Taking the rigid Čech type of the base change

Xk̄ yields a pro-space which we denote by X̄ . A nice feature of the rigid Čech
type over k is that the 0-simplices of X̄ are given by the constant pro-set X(k̄) of
k̄-valued geometric points. Moreover, X̄ inherits a natural action by the absolute
Galois group G. (One should note that this action is only defined on the whole
pro-space and not on each individual space.) This induces an action of G on the
limit of the underlying diagram of X̄ . We denote by X̄G the G-fixed points of the
limit of the inverse system underlying the pro-space X̄ . The set of 0-simplices of
X̄G is then a subset of the set of rational points X(k) of X. In particular, we obtain
a surjective map of sets

X(k)→ π0(X̄G)

from X(k) to the set of connected components of X̄G. Moreover, there is a canonical
map of simplicial sets

η : X̄G → X̄ hG



EXISTENCE OF RATIONAL POINTS AS A HOMOTOPY LIMIT PROBLEM 3

where we write X̄ hG for the continuous homotopy fixed point space

X̄ hG := X hGpf

of X over k. Overall we have the following diagram

(2) X(k) //

$$

π0(X̄ hG)

π0(X̄G)

π0(η)

99

of natural maps of sets. Hence if π0(η) is surjective, it would follow that each
connected component of the homotopy fixed point space X̄ hG corresponds to a
rational point of X.

Let us return to the special case of a variety X as in Conjecture 1.1. It is an
example of a K(π, 1)-variety, i.e. its étale topological type is weakly equivalent to
an Eilenberg-MacLane space of the type K(π, 1) (this is a well-known fact a proof
of which may be found in [21]). For such a variety, there is a natural bijection of
sets

π0(X̄ hG) ∼= S(π1(X/k))

where we recall that S(π1(X/k)) denotes the set of conjugacy classes of continuous
sections of (1). One should note that for this bijection it is crucial that we are
able to define continuous homotopy fixed points. As a consequence of the previous
discussion we can formulate our main result.

Theorem 1.2. Let k and X be as in Conjecture 1.1. Then the map a 7→ [σa] is
surjective if the map of sets

π0(η) : π0(X̄G)→ π0(X̄ hG)

is surjective.

The question whether the comparison map from fixed points to homotopy fixed
points, such as η, is a weak equivalence is a special case of a homotopy limit prob-
lem (see [23]). Unfortunately, to solve a homotopy limit problem is in general a
very difficult task. For example, the comparison of fixed and homotopy fixed points
under the action of finite p-groups was known as the Sullivan conjecture which has
been proved in different variations in the famous works of Miller [13], Carlsson [4]
and Lannes [12]. Nevertheless, we are optimistic that in special cases of arithmetic
interest there will be enough information on the Galois action to deduce informa-
tion about π0(η) in diagram (2).

The content of the paper is organized as follows. In the second section, we
provide a framework for continuous homotopy fixed points of pro-spaces with an
action by a profinite group. In the third section, we discuss rigid Čech types of
algebraic varieties over a field and define a new profinite model for them. In the
last section, we define Galois homotopy fixed points of varieties and construct the
map η which we need for diagram (2). In the final paragraph we show Theorem
1.2.

Acknowledgements: I am grateful to Kirsten Wickelgren, Johannes Schmidt,
and Eric Friedlander for helpful discussions and comments. I would also like to
thank the anonymous referee for many helpful suggestions.
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2. Models in profinite homotopy

2.1. Notations. Let S be the category of simplicial sets whose objects we also
call spaces and let S∗ be the category of pointed spaces. We denote by Ŝ the
category of profinite spaces, i.e. simplicial objects in the category of profinite
sets with continuous maps as morphisms. Let Ŝ∗ be the associated category of
pointed profinite spaces. We consider Ŝ and Ŝ∗ with the simplicial model structures
described in [17] and [19], and denote the corresponding homotopy categories by Ĥ
and Ĥ∗, respectively. (The reader should note that Morel had already introduced

the category Ŝ and equipped it with a Z/p-model structure in [14]).

Example 2.1. Important examples of profinite spaces are classifying spaces for
profinite groups. For a profinite group G, the simplicial set BG given in degree n
by the product of n copies of the profinite group G is in a natural way an object
of Ŝ. Moreover, it comes equipped with the profinite space EG over BG, given in
degree n by the product of n+1 copies of G with a free G-action in each dimension.

If B is a profinite space, we denote by Ŝ/B the category of profinite spaces X

together with a map X → B in Ŝ. This category of profinite spaces over B inherits
a model structure from Ŝ via the forgetful functor.

If X and Y are objects in Ŝ/B, we denote by MapŜ/B(X,Y ) the simplicial set

whose set of n-simplices is given as the set maps in Ŝ/B
MapŜ/B(X,Y )n = HomŜ/B(X ×∆[n], Y )

is given as the set maps in Ŝ/B where ∆[n] denotes the standard simplicial n-
simplex This defines a functor

MapŜ/B(−,−) : (Ŝ/B)op × Ŝ/B → S.

Remark 2.2. Since the model structure on Ŝ/B is simplicial (see [17] and [19,
§2.2]), this functor is homotopy invariant in the following sense. Let Z be an

object in Ŝ/B and f : X → Y a map between fibrant objects in Ŝ/B. If f is a

weak equivalence in Ŝ/B, then the map MapŜ/B(Z, f) is a homotopy equivalence

of fibrant simplicial sets.

2.2. Profinite models for spaces. Our first step in the construction of Galois
homotopy fixed point spaces is to show that a space with finite homotopy groups
has a concrete model in the category Ŝ.

Definition 2.3. A connected simplicial set X is called π-finite if all its homotopy
groups are finite.

The following theorem shows that a π-finite space is homotopy equivalent to a
profinite space in the following sense.

Theorem 2.4. Let G be a finite group and let X be a connected simplicial set
which is π-finite together with a map X → BG. Then there is a profinite space FX
over BG which is a fibrant object in Ŝ/BG and a map ϕX : X → FX over BG
which is a weak equivalence of underlying simplicial sets. In particular, it induces
an isomorphism π∗X ∼= π∗FX of homotopy groups of the underlying simplicial
sets. The assignment X 7→ FX is functorial such that the following holds. If
f : X → Y is a map between connected simplicial sets over BG which are π-finite,
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then the induced map F (f) : FX → FY between profinite spaces over BG makes
the following diagram of underlying simplicial sets commute

(3) X

ϕX

��

f // Y

ϕY

��
FX

F (f)
// FY.

Proof. Let G and X be as in the theorem. In a first step, we apply the profinite
completion functor S → Ŝ, X 7→ X̂. It is defined by taking in each dimension n the
set-theoretic profinite completion X̂n of the set Xn. Since BG is a simplicial finite
set, the universal property of profinite completion yields an induced map X̂ → BG
in Ŝ.

Let Z 7→ RBGZ be a fixed functorial fibrant replacement in Ŝ/BG. Such a

functor exists since the model structure on Ŝ is simplicial and fibrantly generated
and so is the induced model structure on the overcategory Ŝ/BG (see [17, Theorem

2.3]). We define FX to be the fibrant replacement RBGX̂ of the profinite comple-
tion of X considered as a profinite space over BG. The map ϕX : X → FX is the
composition of the canonical maps X → X̂ and X̂ → RBGX̂ over BG.

It remains to show that ϕX is a weak equivalence of underlying simplicial sets.
If Z is a profinite space, let |Z| denote its underlying simplicial set and let Z 7→ RZ

be a functorial fibrant replacement in Ŝ. Recall that the homotopy groups of Z
are equal to the homotopy groups of the Kan complex |RZ|. Since X is π-finite,

the map X → |RX̂| is a weak equivalence of simplicial sets. This follows from
Sullivan’s work [22] on profinite completion. We refer to [18, §3.7 and Corollary
3.15] for a translation to the context of profinite spaces. Finally, since a map is a

weak equivalence in Ŝ/BG if its underlying map in Ŝ is a weak equivalence, the

maps X̂ → RX̂ and X̂ → RBGX̂ are isomorphisms in Ĥ. This implies that the
map X → FX is a weak equivalence of underlying simplicial sets as well. The
stated functoriality of F follows from the universal property of profinite completion
and from the fact that profinite completion and the applied fibrant replacement are
functorial. �

Remark 2.5. 1. We think of FX as a model of X in the category Ŝ/BG.
2. Finding a profinite model for a space can be easily simplified in the following
special case. Let G be a profinite group and let (X,x) be a connected pointed
simplicial set over BG whose only nontrivial homotopy group is the profinite fun-
damental group π1(X,x) =: π. Then the profinite classifying space Bπ ∈ Ŝ∗/BG
is equipped with a pointed map X → Bπ over BG which is a weak equivalence
of underlying simplicial sets. We can consider Bπ as a profinite model for X in
Ŝ/BG.

2.3. Continuous homotopy fixed points. Let G be a profinite group. Recall
that we denote by X 7→ RBGX a fixed functorial fibrant replacement in Ŝ/BG.

Definition 2.6. For X ∈ Ŝ/BG, we define the space XhG to be

XhG := MapŜ/BG(BG,RBGX).

We call XhG the homotopy fixed point space of X.
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This notation and terminology is justified by the following observation. Let ŜG
be the category of profinite G-spaces, i.e. simplicial objects in the category of
profinite sets with a continuous G-action. By taking homotopy orbits, we obtain a
functor

ŜG → Ŝ/BG, Y 7→ (Y ×G EG→ BG)

from ŜG to the category of profinite spaces over BG. This functor is right adjoint
to the functor

Ŝ/BG→ ŜG, X 7→ X ×BG EG.
Moreover, Y 7→ (Y ×G EG → BG) sends fibrant profinite G-spaces to fibrations

over BG. Let Y 7→ RGY be a fixed fibrant replacement in ŜG. Then, for a profinite
G-space Y , we have a natural isomorphism

MapŜG(EG,RGY ) ∼= MapŜ/BG(BG,RGY ×G EG).

The mapping space on the left is the (continuous) homotopy fixed point space of
the profinite G-space Y (see also [17] and [20]).

Remark 2.7. The crucial point in the construction of XhG is that we do take the
topology of G into account by considering continuous mapping spaces in Ŝ/BG.

Moreover, the functor X 7→ XhG, Ŝ/BG → S is homotopy invariant and does not

depend on the choice of fibrant replacement in Ŝ/BG. This follows from the fact

that BG is cofibrant in Ŝ/BG and that the model structure on Ŝ/BG is simplicial
(see also [17] and [19, §2.2]).

2.4. Homotopy fixed points and sections. For our main arithmetic application,
we need to relate homotopy fixed point spaces to the following set of sections. Let
π̄ be a profinite group and let

(4) 1→ π̄ → π → G→ 1

be a fixed extension of G by π̄. We denote the set of π̄-conjugacy classes of contin-
uous sections of (4) by S(π).

The homotopy fixed points of the classifying space Bπ are related to the set S(π)
in the following way.

Proposition 2.8. There is a natural bijection

π0(MapŜ/BG(BG,Bπ)) ∼= S(π).

Proof. The set of connected components of MapŜ/BG(BG,Bπ) is in bijection with

the set of homotopy classes of maps

HomĤ/BG(BG,Bπ).

The universal property of classifying spaces implies that the latter set is in bijection
with the set of continuous outer homomorphisms from G to π over G. The latter
set is in bijection with S(π). �

Remark 2.9. One should note that, if the groups π and G are infinite profinite
groups, it is crucial for the assertion in Proposition 2.8 that we use mapping spaces
in Ŝ/BG, since we are interested in the set of continuous sections of (4).
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2.5. Profinite models for pro-spaces. Our next goal is to apply the construc-
tions of the previous sections to pro-spaces. Since the étale topological type of a
variety is given as a pro-object in the category of spaces, we need this generalization
for the arithmetic applications of the next section.

For a category C, let pro-C be the category of pro-objects of C, i.e. the category
of filtered diagrams in C with morphism sets defined by

Hompro−C({X(i)}, {Y (j)}) := lim
j

colim
i

HomC(X(i), Y (j)).

Let X = {X (i)}I and Y = {Y(j)}J be pro-objects of C. Assume we have a
functor α : J → I between the indexing categories and a natural transformation
T : X ◦ α→ Y. This datum defines an element

(T (j))j∈J ∈ lim
j

HomC(X (α(j)),Y(j))

which we consider as a morphism in pro-C via the natural map

lim
j

HomC(X (α(j)),Y(j))→ Hompro−C(X ,Y).

Such a morphism of pro-objects is called a strict morphism.
If C is a simplicial category, then the mapping space of two pro-objects is defined

by

Mappro−C({X (i)}, {Y(j)}) := lim
j

colim
i

MapC(X (i),Y(j)).

We are interested in the following special situation. Let G = limkG(k) be a
profinite group given as the inverse limit of finite groups G(k) indexed over the
cofiltering category K. Let {X (i)}I be a pro-object in the category of spaces. We
assume that every X (i) is a connected π-finite space in the sense of Definition 2.3.
Assume that we are given a strict morphism {Xi}I → {BG(k)}K of pro-objects in

Ŝ. By definition of a strict morphism, this means that we have a functor α : K → I
and natural maps X (α(k)) → BG(k) in Ŝ for every k ∈ K. (For those i ∈ I for
which there might be no k ∈ K with α(k) = i, we consider X (i) to be a space over
the trivial classifying space B{e} = ∗.)

For each i ∈ I, X (i) satisfies the assumptions of Theorem 2.4 and we can apply
the functor X (i) 7→ FX (i). We obtain a pro-object {FX (i)}I in the category of
pointed profinite spaces together with a strict morphism

{FX (i)}I → {BG(k)}K
of pro-objects in Ŝ∗. Since taking homotopy limits is functorial with respect to
strict morphisms, we get an induced map in Ŝ∗

ϕ : holim
i

FX (i)→ holim
k

BG(k)

which, by abuse of notations, is also denoted by ϕ. Since filtered homotopy inverse
limits preserve fibrations, ϕ is a fibration in Ŝ∗. (We refer the reader to [19, §2.5]

for homotopy limits in Ŝ∗.)

Lemma 2.10. For each n ≥ 1, the homotopy group πn(holimi FX (i)) is naturally
isomorphic in the category of profinite groups to the profinite group {πn(X (i))}I .

Proof. By Theorem 2.4, we have natural isomorphisms πn(X (i)) ∼= πn(FX (i))
for every i ∈ I. Since the category of profinite groups is canonically equivalent
to the pro-category of finite groups, it suffices to show that the homotopy group
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πn(holimi FX (i)) is isomorphic to the profinite group limi πn(X (i)). But this fol-
lows as in [19, Lemma 2.14] from the Bousfield-Kan spectral sequence for homotopy
limits. �

The previous lemma justifies the following terminology.

Definition 2.11. We call Xpf := holimi FX (i) ∈ Ŝ together with the map ϕ to

BG in Ŝ a profinite model over BG of the pro-space X = {X (i)}I .
We define the continuous G-homotopy fixed points of X to be the space

X hGpf := MapŜ/BG(BG,Xpf).

Remark 2.12. The canonical map from limits to homotopy limits induces a natural
map of underlying spaces

(5) lim
i
X (i)→ holim

i
FX (i).

Remark 2.13. In the above situation, let us assume that X = {X (i)}I be a pro-
space such that each X (i) is a connected π-finite space such that {π1(X (i))}I is
the only nontrivial pro-homotopy group of X (even though not every individual
spaceX (i) is a Bπ1-space). Then, by Lemma 2.10, we could also define a profinite
model for X via the pro-space {Bπ1(X (i))}I . The limit limiBπ1(X (i)) is isomor-
phic to the simplicial profinite set B(limi π1(X (i))) which in degree n is given by
the n-fold product of copies of the profinite group limi π1(X (i)). The canonical
map

lim
i
B(π1(X (i)))→ holim

i
B(π1(X (i)))

is then a weak equivalence of profinite spaces. Hence in this case,

B(lim
i
π1(X (i))) = lim

i
B(π1(X (i)))→ lim

k
BG(k) = BG

would serve just as well as a profinite model of the pro-space {X (i)}I .

2.6. Group actions on pro-spaces. Finally, the Galois action on the étale topo-
logical type of a variety leads us to the following notion of a group action on a
pro-space.

Let G be a profinite group which we assume to be indexed by the cofiltered
system of its open normal subgroups and let X̄ = {X̄ (j)}J be a pro-object of S.
We assume that G acts on X̄ by strict automorphisms, i.e., every element g ∈ G
induces a strict automorphism of X̄ given by an induced functor g : J → J and a
natural transformation T (g) : X̄ (g(j))→ X̄ (j). Then G acts on the mapping space

Mappro-S(∗, X̄ ) = lim
j
X̄ (j).

A map f : EG → X̄ in pro-S is given by a compatible collection of maps
{fj : EG→ X̄ (j)}j where each fj is an element of colimU Hom(EG/U, X̄ (j)). Con-
sidering EG as a pro-space {EG/U}U where U runs through the open normal
subgroups of G, then G acts trivially on the indexing category of EG and by mul-
tiplication on each space EG/U . Since G acts trivially on the indexing category
of EG, we can define the action of G on the map f as follows. An element g ∈ G
sends f to the morphism

gf = {gfj : EG→ X̄ (j)}j
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in pro-S given by the composite

(6) gfj : EG
g−1

−−→ EG
fg(j)−−−→ X̄ (g(j))

T (g)−−−→ X̄ (j).

Moreover, this induces an action of G on the mapping space

Mappro-S(EG, X̄ ).

Let Mappro-S(EG, X̄ )G denote the fixed points. Then the canonicalG-equivariant
map EG→ ∗ in pro-S induces a canonical map of spaces

Mappro-S(∗, X̄ )G → Mappro-S(EG, X̄ )G.

Now given a G-equivariant map f : EG → X̄ of pro-spaces, i.e., an element in
the G-fixed point set of Hompro-S(EG, X̄ ), we obtain an associated G-equivariant
map EG→ X̄ ×EG. Taking the quotient by the G-action on both sides induces a
map EG/G = BG→ EG×G X̄ = (EG× X̄ )/G of pro-spaces which is a section of
the canonical map EG ×G X̄ → BG in pro-S. Hence there is a canonical map of
spaces

Mappro-S(EG, X̄ )G → Mappro-S/BG(BG,EG×G X̄ ).

Thus, overall we have constructed a map of spaces

Mappro-S(∗, X̄ )G → Mappro-S(EG, X̄ )G → Mappro-S/BG(BG,EG×G X̄ ).

Now let p : X̄ → X be a strict morphism of pro-objects from X̄ to a pro-object
X over BG which satisfies the hypotheses of Section 2.5. Then p induces a natural
map

Mappro-S/BG(BG,EG×G X̄ )→ Mappro-S/BG(BG,X )

After taking a profinite model X as in the previous section we obtain a map of
spaces

Mappro-S/BG(BG,X )→ MapBG(BG,Xpf) = X hGpf .

Hence overall we obtain a canonical map of spaces

η : (lim
j
X̄ (j))G → X hGpf .

Remark 2.14. In the case that X has the homotopy type of the homotopy orbit
EG×G X̄ of X̄ , we may consider X hGpf as the continuous homotopy fixed points of

X̄ and also write

X̄ hG := X hGpf

for this space. Moreover, we then consider η as a map from fixed points to the
homotopy fixed points of X̄ under G. The main example for this situation is the
Galois action on the étale topological type of a smooth variety over a field.

3. Étale topological types

We will now turn to the cases of arithmetic geometric origin in which we apply
the ideas of the previous sections. The first step is to choose a specific model for
the étale topological type of a variety. Instead of using the étale type of schemes
defined by Friedlander in [6], we consider the rigid Čech étale topological type over
a field. It has been first defined and applied by Friedlander in [5].
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3.1. Rigid Čech types over a field. We briefly recall the definition of the rigid
Čech type of a variety over a field from [5, §3]. We start with the notion of a rigid
covering. Let k be a field, k̄ an algebraic closure of k and let X be a scheme of
finite type over k. We denote by X(k̄) the set of geometric points of X with values
in k̄ covering the structure morphism p : X → Spec k. A rigid covering α : U → X
of X over k is a disjoint union of pointed, étale, separated maps∐

x∈X(k̄)

(αx : Ux, ux → X,x)

where each Ux is connected and ux is a geometric point of Ux such that αx ◦ux = x.
If Y is another scheme of finite type over k and f : X → Y is a morphism of schemes,
then a morphism of rigid coverings φ : (α : U → X) → (β : V → Y ) over f is a
morphism of schemes φ : U → V over f such that φ ◦ ux = vf(x) for all x ∈ X(k̄).

If α : U → X and β : V → Y are rigid coverings of X and Y over k, then the

rigid product U
R
×k V → X ×k Y is defined to be the closed and open immersion

of U ×k V → X ×k Y given as the disjoint union indexed by geometric points x× y
of X ×k Y of

αx × βx : (Ux ×k Vy)0 → X ×k Y
where (Ux ×k Vy)0 is the connected component of Ux ×k Vy containing the distin-
guished geometric point ux × vy.

If f : X → Y is a map of schemes and V → Y a rigid covering of Y , then the
pullback f∗(V → Y ) = U → X is the disjoint union of pointed maps

(Vf(x) ×Y X)x → X

where (Vf(x) ×Y X)x is the connected component of Vf(x) ×Y X containing the
geometric point f(x)× x.

The category of rigid coverings of X over k is denoted by RC(X/k). The fact
that each connected component Ux is equipped with a geometric point implies
that there is at most one map between any two objects of RC(X/k). For, a map
of connected, separated étale schemes over X is determined by the image of any
geometric point (see [6, Proposition 4.1]). Together with the construction of rigid
products this shows that RC(X/k) is cofiltering.

For a rigid covering U → X, we denote by NX(U) = coskX0 (U) its Čech nerve,
i.e. the simplicial scheme given in degree n by the (n + 1)-fold fiber product of U
with itself over X in the category of schemes. Since X is locally noetherian, the
connected component functor π is well-defined. In [5, §3], Friedlander defines the
rigid Čech étale topological type of X over k to be the pro-simplicial set

(X/k)rét : RC(X/k)→ S
given by sending U → X in RC(X/k) to the simplicial set π(NX(U)) of connected
components of the Čech nerve. For a map f : X → Y of schemes of finite type over
k, there is a strict morphism

frét : (X/k)rét → (Y/k)rét

of pro-simplicial sets induced by the pullback functor f∗ : RC(Y/k) → RC(X/k).
This makes the assignment

X 7→ (X/k)rét

into a functor from the category of schemes of finite type over k to the category of
pro-simplicial sets.
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The following proposition shows that if X is quasi-projective, then (X/k)rét has
the same homotopy type as the usual étale topological type. The proof follows from
a combination of Friedlander’s arguments in [5, Proposition 3.2 and a remark on
page 102], and [6, Proposition 8.2].

Proposition 3.1. Let X be a quasi-projective scheme of finite type over a field k.
Then there is a zig-zag of canonical weak equivalences in pro−S between (X/k)rét

and the étale topological type Xét of [6, §4].

Remark 3.2. The set of 0-simplices of π(NX(U)) for any rigid cover U → X in
RC(X/k) is the set X(k̄) of geometric points with values in k̄. Hence the pro-
set of vertices of (X/k)rét is just the constant functor sending each rigid covering
U =

∐
x∈X(k̄) Ux → X to X(k̄). This makes (X/k)rét a very convenient object for

our purposes.

Lemma 3.3. Let k be a field with absolute Galois group G. The rigid étale Čech
type of k is isomorphic in pro− S to the pro-classifying space BG, i.e. there is an
isomorphism

(Spec k/k)rét
∼= BG.

Proof. Let L/k be a finite Galois extension of k contained in a fixed separable
closure k̄. The associated Čech nerve Nk(L) consists in degree n of the fiber product
over Spec k of n + 1 copies of SpecL. The set of connected components in each
degree is hence just given by the product of n copies of the finite Galois group
Gal(L/k) of the extension L/k. Hence the simplicial set of connected components
ofNk(L) is naturally isomorphic to BGal(L/k). Since the rigid covers given by finite
Galois extensions L ⊂ k̄ are cofinal among all rigid covers defining (Spec k/k)rét,
this proves the assertion. �

The following two examples of morphisms will be most important for us.

Example 3.4. Let X be a geometrically connected variety over k. The map
prét : (X/k)rét → (Spec k/k)rét induced by the structure map p : X → Spec k has
the following shape. As we have mentioned in the previous proof, a rigid cover of
Spec k is given by a finite Galois extension L/k inside the chosen algebraic closure
k̄. The pullback functor p∗ : RC(k/k)→ RC(X/k) sends the finite Galois extension
L/k to the rigid cover UL → X

(UL → X) :=
∐

x∈X(k̄)

XL, xL → X,x ∈ RC(X/k).

given by the disjoint union of the (connected) finite Galois covers XL = X×kL→ X
indexed by the geometric points x ∈ X(k̄). The component XL is equipped with
the canonical lift xL of x induced by the map Spec k̄ → SpecL. The canonical
isomorphism XL ×X XL = X ×k (L ×k L) induces a functorial map of simplicial
sets

π(NX(UL))→ π(Nk(L)).

This determines the strict map prét as an element in the set

lim
L/k

HomS(π(NX(UL)), π(Nk(L))).

In particular, since π(Nk(L)) is isomorphic to BGal(L/k), we see that each sim-
plicial set π(NX(UL)) is equipped with a map to the classifying space BGal(L/k)
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of the finite group Gal(L/k). Since X is geometrically connected over k, this map
induces a surjective homomorphism of fundamental groups.

Example 3.5. Let X be a geometrically connected variety over k. Every element
g ∈ Gal(k̄/k) defines a morphism Xk̄ → Xk̄ of Xk̄ = X ⊗k k̄. The induced
map grét : (Xk̄/k)rét → (Xk̄/k)rét of rigid étale types is induced by the functor
g∗ : RC(Xk̄/k)→ RC(Xk̄/k) sending the rigid cover∐

x∈X(k̄)

Ux → Xk̄

to the rigid cover ∐
x∈X(k̄)

(Ug(x) ×Xk̄
Xk̄)x → Xk̄

where Ug(x) ×Xk̄
Xk̄ is the fiber product of the diagram

Ug(x) ×Xk̄
Xk̄

//

��

Ug(x)

��
Xk̄ g

// Xk̄

and (Ug(x) ×Xk̄
Xk̄)x is the connected component containing x. Hence on 0-

simplices, the map grét is given by sending the connected component (Ug(x)×Xk̄
Xk̄)x

indexed by x to the component Ug(x) indexed by g(x).
We conclude that, after identifying the pro-set of 0-simplices with the set of

geometric points X(k̄) over k̄, the map grét is just given by the natural action of g
on X(k̄). Moreover, a 0-simplex of (Xk̄/k)rét which is fixed under the action of all
elements g ∈ Gal(k̄/k) must be indexed by a rational point of X.

3.2. Profinite models for étale types. Let k be a field with algebraic closure
k̄ and absolute Galois group G := Gal(k̄/k). Let X be a geometrically connected
smooth variety over k. In the following we denote the rigid Čech type (X/k)rét of
X over k by X and write I for the indexing category RC(X/k), i.e. X = {X (i)}I .

By Lemma 3.3, we can identify pro-spaces over (Spec k/k)rét with pro-spaces
over BG. Hence we can consider X as a pro-space over BG. By our assumption on
X and by [1, Theorem 11.1], every X (i) is a connected π-finite space in the sense
of Definition 2.3. Moreover, by Example 3.4, we know that each X (i) is equipped
with a map to the classifying space BΓ for some finite quotient group Γ of G.

Hence, as described in Section 2.5, we can associate to X a functorial profinite
model Xpf over BG. By Lemma 2.10 and Proposition 3.1, we obtain the following
result.

Theorem 3.6. For k and X as above, the fibrant profinite space Xpf over BG has
the same homotopy type as the étale topological type of X, i.e. the levelwise map
of underlying pro-spaces {X (i)}I → {FX (i)}I induces an isomorphism of profinite
groups πn(Xpf) ∼= πét

n (X) for all n ≥ 1.

4. Rational points and Galois homotopy fixed points

We can now give a new definition of continuous homotopy fixed points of a
smooth variety over a field under the natural Galois action. A previous definition
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has been given in [17]. In [11], Harpaz and Schlank provide a definition only for
the set of connected components of a potential homotopy fixed point space.

4.1. Galois homotopy fixed point spaces. Let k be a field with algebraic closure
k̄ and absolute Galois group G := Gal(k̄/k). Let X be a geometrically connected
smooth variety over k and Xk̄ be its lift to k̄. We denote (X/k)rét by X = {X (i)}I
and write X̄ = {X̄ (̄i)}Ī for the rigid Čech type (Xk̄/k)rét of Xk̄. The pro-space X̄
is equipped with a natural action of G of the form described in Section 2.6.

Let x : Spec k̄ → X be any geometric point of X. It turns X into a pro-object
in S∗. In particular, we can form the profinite model Xpf over BG of X described
in Section 3.2. Essentially the same proof as for [17, Theorem 3.5] shows that the
profinite model of X over BG has the homotopy type of the G-homotopy orbits of
X̄ .

Definition 4.1. We define

X̄ hG := X hGpf = MapŜ/BG(BG,Xpf)

to be the continuous homotopy fixed point space of X̄ = (Xk̄/k)rét.

The canonical morphism Xk̄ → X induces a morphism of pro-objects of pointed
spaces X̄ → X . As explained in Section 2.6, this yields a canonical map

(7) η : X̄G → X̄ hG

from the G-fixed points X̄G = (limī X̄ (̄i))G to the continuous homotopy fixed points
space of X̄ .

Remark 4.2. One should note that the action of G on (Xk̄/k)rét is only defined
on the whole pro-object and not on each space. Hence (Xk̄/k)rét is in general not
a pro-object of simplicial G-sets. But after forming the mapping space, i.e. after
taking the limit of the underlying filtered diagram, we obtain a simplicial object in
the category of G-sets as described in Section 2.6.

4.2. Rational points and homotopy fixed points. We keep the notations of
the previous section. By functoriality of rigid Čech types, every rational point of
X induces a map of pro-spaces

(Spec k/k)rét → X

compatible with the induced structure map X → (Spec k/k)rét. After taking profi-
nite models, we get a well-defined map of sets

(8) X(k)→ HomĤ/BG(BG,Xpf) ∼= π0(MapŜ/BG(BG,Xpf)).

Since the mapping space on the right of (8) is by definition the continuous
homotopy fixed point space of Xpf (which we also denote by X̄ hG), we obtain a
natural map of sets

X(k)→ π0(X̄ hG).

Moreover, we know from Remark 3.2 that the pro-set of 0-simplices of X̄ is
canonically isomorphic to the set X(k̄) of k̄-valued geometric points of X. By
Example 3.5, the action of the absolute Galois group G of k on the pro-set of
0-simplices of X̄ is just given by the natural action of G on X(k̄). Since each
fixed point under this G-action has to be indexed by a rational point, we see that
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the set of G-fixed points the 0-simplices of X̄ is a subset of the k-rational points
X(k) = X(k̄)G of X. Hence we obtain a canonical surjective map of sets

X(k)→ π0(X̄G).

Together with the map η we obtain a map of sets

X(k)→ π0(X̄G)
π0(η)−−−→ π0(X̄ hG).

Hence, since the map X(k) → π0(X̄G) is surjective, it is possible to detect
rational points on the smooth k-variety X by studying the map η : X̄G → X̄ hG
which we consider as a fixed points to homotopy fixed points map.

Remark 4.3. It is important that we are able to consider continuous homo-
topy fixed points under the action of the profinite Galois group. One reason will
be given in the final section where we will see that, for a suitable X, the set
π0(MapŜ/BG(BG,Xpf)) is in bijection with the set of continuous sections of the

short exact sequence (1) of the introduction. Another reason is given by the follow-
ing argument. The E2-terms of a descent spectral sequence for Galois homotopy
fixed points should be isomorphic to Galois cohomology and not to ordinary group
cohomology. This is in fact the case for our definition of X hGpf . If we are given a
rational point x on X, there is a spectral sequence of the form

Es,t2 = Hs(G;πt(X̄ , x))⇒ πt−s(X hGpf )

where Hs(G;πt(X̄ )) denotes the continuous cohomology of G with coefficients in
the profinite G-module πt(X̄ , x) (respectively profinite G-set for t = 0 and profinite
G-group if t = 1). This spectral sequence conditionally converges to πt−s(X hGpf ))
for s ≥ 0 and t ≥ s + 1. A proof of this statement can be read off from the
arguments given in the proofs of [17, Theorem 2.16], [20, Theorem 3.17], and [3, IX
5.4]. Unfortunatelyy, the convergence for t− s = 0 is more complicated (see [3, IX
5.4]).

4.3. The section conjecture as a homotopy limit problem. Our main exam-
ple of a case where the observation of Section 4.2 might be interesting is Grothendieck’s
section conjecture. Let k be a number field and G = Gal(k̄/k) its absolute Galois
group. Let X be a geometrically connected variety over k. For any given geometric
point x of X, there is a natural short exact sequence of étale fundamental groups

(9) 1→ π1(Xk̄, x)→ π1(X,x)→ G→ 1.

Let a : Spec k → X be a rational point on X and let y : Spec k̄ → X be a
geometric point lying above a. Applying the functor π1(−, y) to the morphism a
induces a continuous homomorphism of groups

σa : G→ π1(X, y).

Since X is geometrically connected, there is an étale path from y to x which induces
an isomorphism λ : π1(X, y)→ π1(X,x). Composing σa with λ defines a section

λ ◦ σa : G→ π1(X,x)

of sequence (9). The choice of a different path from y to x changes this section by
composition with an inner automorphism of π1(Xk̄, x). Hence a rational point of
X induces a section of (9) which is well-defined up to conjugacy by an element of
π1(Xk̄, x). We denote the conjugacy class of the section induced by the rational
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point a by [σa] and denote the set of all π1(Xk̄, x)-conjugacy classes of sections of
(9) by S(π1(X/k)). With these notations, there is a map of sets

(10) X(k)→ S(π1(X/k)), a 7→ [σa].

Grothendieck’s section conjecture states that map (10) is a bijection if X is a
smooth projective curve of genus at least two. It is known that the map is injective.
The harder and still open question is whether it is surjective.

We would like to shed some light on map (10) from an étale homotopy-theoretical
point of view. Denoting the rigid Čech type (X/k)rét ofX again by X = {X (i)}I , we
know that each X (i) is a pointed connected π-finite space. Since X is smooth, the
pro-system of these finite fundamental groups is just the profinite étale fundamental
group π1(X) = πét

1 (X,x) ofX. This follows from the finiteness result of [1, Theorem
11.1] and [6, Corollary 5.8]. The crucial and well-known observation is that X is
a K(π, 1)-variety over k (see for example [21]), i.e., there is a weak equivalence of
pro-spaces

(11) X ' Bπ1(X).

We denote the rigid Čech type (Xk̄/k)rét again by X̄ . Then we have the canonical
map of sets

X(k)→ π0(X̄G)
π0(η)−−−→ π0(X̄ hG)

described in the previous section.
Furthermore, we deduce from Proposition 2.8 that there is a natural bijection of

sets

π0(X̄ hG) ∼= S(π1(X/k)).

It follows from this result that map (10) is surjective if the map

X(k)→ π0(X̄ hG)

is surjective. Since the map X(k) → π0(X̄G) is surjective, we get the following
criterion.

Theorem 4.4. Let k be a number field and let X be a smooth, projective curve of
genus g ≥ 2. Then the map (10), a 7→ [σa], is surjective if the map

π0(X̄G)
π0(η)−−−→ π0(X̄ hG)

is surjective.

Remark 4.5. It follows from equivalence (11) that we could even take the profi-
nite space holimiBπ1(X (i)), or equivalently, as we explained in Remark 2.13,

limiBπ1(X (i)) = Bπ1(X), as a fibrant profinite model Xpf of X in Ŝ/BG.

Remark 4.6. The category Ŝ of profinite spaces has first been studied by Morel in
[14] where a model structure was constructed in which the weak equivalences are the
maps that induce an isomorphism in continuous Z/p-cohomology. Since it seems
more likely that techniques from the proofs of the Sullivan conjecture ([13], [4], [12])
can be translated first to the pro-p-case, one may consider it to be a more accessible
problem to decide one of the following related questions. Is a p-completed version
of η a weak equivalence? Does η induce an isomorphism on mod p-homology?
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1993), Contemporary Mathematics, vol. 181, 1995, 187-224.

9. P. G. Goerss, J. F. Jardine, Simplicial Homotopy Theory, Birkhäuser Verlag, 1999.
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