NON-REALIZABILITY OF A TRIPLE MASSEY PRODUCT

EIVIND XU DJURHUUS AND GEREON QUICK

ABSTRACT. We show that an often used example of a cohomology algebra with
non-vanishing triple Massey product is intrinsically As-formal and therefore, in
fact, cannot be realized as the cohomology of a differential graded algebra with
non-vanishing triple Massey product. We prove this result by computing the
graded Hochschild cohomology group which contains the potential obstruction
to the vanishing.

1. INTRODUCTION

Let C* be a differential graded Fs-algebra (DGA) with differential § and coho-
mology algebra H®. Let a,b,c be cohomology classes such that a U b = 0 and
buc=0. We recall that the Massey product {a,b, c) is defined as follows. Let A,
B, C be cocycles representing a, b, ¢, respectively, and let Ey;, and Ep. be cochains
such that 0FE,, = Au B and 0E. = Bu C. The set M = {A, B,C, Ep, Ep.} is
called a defining system for the triple Massey product of a, b, and c¢. The cochain
AU Ey.+ E.,uC s a cocycle. We write {a, b, cypr € H® for the corresponding coho-
mology class. The triple Massey product {a,b, c) is the set of all cohomology classes
{a,b,cypr for all such defining systems M. The class <{a,b,c)y; depends on the
choice of the defining system M. The image in the quotient H*/(a w H* + H® U ¢),
however, is uniquely determined by a, b, and ¢. We say that {a,b,c) vanishes if
its corresponding class in H*/(a u H®* + H® U c¢) is zero. Massey products play an
important role in the classification of DGAs with a given cohomology ring.

To construct the simplest commutative graded algebra which may be realized as
the cohomology of a DGA with a non-vanishing Massey product, one may consider
Fsla, b, c]/(ab, be) with a, b, ¢ elements in degree one. We have ab = 0 and bc = 0
by construction, and hence {a, b, ¢y is defined. We may then expect that it may be
possible to find a DGA such that {a, b, ¢) does not vanish. In this note, however, we
show that the Massey product {a, b, c) always vanishes. More precisely, our main
result is the following. Recall that a differential graded algebra is called As-formal
if the minimal Ay-model of C* has a trivial homotopy associator ms (see e.g. [1]).

Theorem 1.1. Let C* be a differential graded algebra over Fo with cohomology
algebra isomorphic to Fala, b, c]/(ab,bec). Then C* is As-formal. Thus, all triple
Massey products for C* wvanish. In particular, the triple Massey product {a,b,c)
vanishes for C*.

Our interest in the realizability of triple Massey products grew out of the work
of Hopkins—Wickelgren in [3] on triple Massey products in Galois cohomology. The
latter has inspired a lot of research in recent years, see for example [9] and [10].
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Remark 1.2. One may consider other Fo-algebras and ask whether they realize a
non-trivial Massey product. Since the definition of the Massey product does not
require distinct elements, we may first consider the algebra Fy[a]/(a?) with just
one generator. However, Fa[a]/(a?) is zero in degree two, and hence {a,a,a) must
vanish. The algebra Fa[a,b]/(ab) is a Boolean graded algebra in the sense of [11]
Definition 6.1]. More generally, any algebra of the form Fa[aq, ..., a,]/I where I is
the ideal generated by all products a;a; for ¢ # j is a Boolean graded algebra. The
algebra F[a, b]/(a?, ab) is a connected sum of a dual and a Boolean graded algebra
in the sense of [I1l Section 6]. All these algebras are intrinsically Ay-formal by [11]
Theorem 7.13] and do not allow for non-vanishing Massey products.

We now outline the proof of Theorem and thereby describe the content of the
paper. For the whole manuscript, we assume that all algebras and vector spaces are
over Fo. In Section [2] we recall the Hochschild cohomology of graded algebras and
construct the Hochschild cohomology class [ms3] € HH*~!(H*(C*)) associated to a
differential graded algebra C*. We note that [ms] equals the canonical class of C*
introduced by Benson-Krause-Schwede in [1] as an obstruction for the realizability
of modules over Tate cohomology. We then show that C*® is As-formal if and only
if [mgs] is zero. For the latter, we assume familiarity with some basic theory of
Ag-algebras. In Section [3] we recall the definition of Koszul algebras and show that
Fola,b, c]/(ab, be) is Koszul. Knowing that an algebra is Koszul simplifies the task
to compute its Hochschild cohomology significantly. In Section[dwe prove Theorem
which states that HH* ! (Fy[a, b, c]/(ab, bc)) = 0 by computing the image and
the kernel of the differential in the Hochschild complex. Theorem then implies
Theorem [[11
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2. HOCHSCHILD COHOMOLOGY AND MASSEY PRODUCTS

Let A be a graded Fa-algebra. We recall that the bar resolution B(A) of A is the
non-negative chain complex of free graded A-bimodules given by B, (A) := A®"+2
for n = 0. The differential d: B,,(A) — B,—1(A) is given by

a0®-.-®an+1>—>Za0®"'®aiai+1®"'®an+l-

=0

We write A° = A ® A°P. Note that A®"+2 ~ A° ® A®" as a graded A-bimodule,
hence B(A) indeed consists of free modules.

Proposition 2.1. The bar resolution B(A) is a free resolution of A as a graded
A-bimodule.

Proof. Tt suffices to show that the extended complex B(A) is acyclic, where B(A) is
extended from B(A) by adjoining B_1(A) := A in degree —1 via the multiplication
map p: AQ A — A. We claim that the map h: B(A) — B(A) of degree 1 given by

a® - Qapt1 > 1Qa® - ®any
is a contracting homotopy i.e., dh + hd = 1. Indeed, we compute directly that

dh(ag ® - Qant1) = ®ant1 — hd(ag® -+ ® ay). g
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Definition 2.2. Let M and N be graded left A-modules. We define Hom 4, (M, N)
as the graded Fao-vector space with degree s component given by A-linear graded
maps f: M — N|[s], where N[s] is the graded A-module given by N[s]* = Ns*t™.

Definition 2.3. Let M be a graded A-bimodule. We define the Hochschild coho-
mology HH™*(A, M) as the nth cohomology of the cochain complex

Hom 4. (B(A), M)
of graded Fa-vector spaces. When M = A we will write HH(A) := HH(A, A).

We note that the groups HH**(A, M) are equipped with a cohomological grad-
ing, and an internal grading induced by the grading of A and M. We can describe
HH™*(A, M) more concretely as follows. Using the natural contracting isomor-
phism

Hom . (A° ® A®", M) ~ Homg, (A®", M)

we see that HH™*(A, M) is isomorphic to the nth cohomology of the complex
(1) -+ — Homg, (A®"~", M) % Homg, (A®", M) 5 Homg, (A" M) — -,
where the differentials are given by

a1 ® - @ant1) =ar1flaz® - Qany1)

+ Y fla1® - ®aiai1 @ ®ani1)

i=1
+ f(al & ®an)an+1-

Remark 2.4. By Proposition we see that HH(A, M) computes the graded Ext
modules Ext 4.(A, M). In particular, we can compute HH(A, M) using any free
resolution of A as a graded A-bimodule.

We now assume that the reader is familiar with A -algebras. For an introduction
to the theory of Ag-algebras and references with all details we refer to [7]. Let
(C*,8,U) be a differential graded algebra (DGA) over Fy with cohomology algebra
H*. By the work of Kadeishvili [4, 5] (see also [6], [7], and [§]), one can equip H*®
with the structure of an Ay -algebra (H*®, {m,},>1) such that m; = 0 together with
a quasi-isomorphism of A.-algebras (H*,{m,}) — (C*,6,u). The A-algebra
(H*,{my,}) is called a minimal model of (C*,d,u). A DGA is called Ay-formal if
its minimal model can be chosen such that m,, = 0 for all n > 3. We now consider

the following weaker notion.

Definition 2.5. Let C* be a DGA. We say that C*® is As-formal if its minimal
model can be chosen such that mgz = 0.

We recall the following special case from [2, Theorem C|. Let a,b,c € H*® be
cohomology classes such that a ub = 0 and buc = 0. Then m3(a®b®c) € {a, b, c).
This implies the following well-known fact.

Proposition 2.6. Let C* be a DGA. Assume that C* is Az-formal. Then the triple
Massey product {a,b,c) contains zero. O

We note that ms is a homomorphism ms: (H*)®3 — H*[—1] of graded algebras,
and we can construct ms as follows (see for example [I}, Section 5], [8]). We choose
an Fy-linear graded map f;: H* — Ker § which induces the identity on H®. Since f;
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is multiplicative on cohomology, we can find a graded Fo-linear map fo: H*QH® —
C*® of degree —1 satisfying

6(f2(a®Vb)) = fi(a v b) + fi(a) v f1 (D).
Now we define a graded Fa-linear map ®3: (H*)®* — C*[—1] by
(2)  P3(a®b0®c) = fi(a)f2(b®c) + fa(a®b)f1(c) + f2((ab) ® ¢ + a ® (be))

for all homogeneous elements a,b,c € H® where we write xy for the product x U y
to shorten the notation. We check that ®3 has image in the cocycles of C*, and
hence ®3 induces a graded map [®3]: (H*)®3 — H*[-1]. We set m3 := [®3]. By
[l Proposition 5.4], m3 is a cocycle in the complex (). By [I, Corollary 5.7, the
corresponding Hochschild cohomology class [m3] € HH*~!(H*) is independent of
the choice of fi and fo, and it is called the canonical class of C* following Benson—
Krause—Schwede who studied this class as an obstruction to the realizability of
modules over Tate cohomology in [I]. The following result is a modified version of
Kadeishvili’s theorem [5] (see also [I3] Theorem 4.7]).

Theorem 2.7. Let C* be a DGA with canonical class [m3] € HH* 1 (H*). Then
C* is As-formal if and only if [mg] = 0.

Proof. If C* is As-formal then mg is a trivial cocycle, and the class of m3 vanishes
in HH*~!(H*). Now we assume that [ms3] = 0 in HH*"'(H*®). We may assume
that ®3 and hence mg is constructed using maps fi, fo as in . Then there
exists an Fa-linear map n: (H*)®? — (Ker§)[—1] such that d%[n] = m3 as maps
(H*)® — H*[-1]. We set fo = fo + 7. We note that fo satisfies

3fa(a®b) = 8(f2(a®b) + n(a®b)) = fi(a v b) + fi(a) v fi(b)
since o = 0. We then define the map D by replacing f» with fs, i.e., we define
P3(a@b®c) = f1(a)fa(b®c) + f2(a®b)fi(c) + fo((ab) @ ¢ + a @ (be))

for all homogeneous elements a,b,c € H* where we again write xy for x U y to
shorten the notation. We then have

(@3- 3) (@b D) = fi(a)n(b @) + n(a@b) f1(e) + n((ab) @ ¢ + a ® (bc)).

By definition of 0% and the assumption on 7, this implies &)3 =®3 —0%n =0 as
maps (H*)®® — H*[-1]. O

As a direct consequence we get:

Corollary 2.8. Let A be a graded algebra with HH?”*l(A) = 0. Then every DGA
C* whose cohomology algebra is isomorphic to A is As-formal. O

By Proposition [2.6] and Corollary 2.8 in order to show Theorem [L.1]it will suffice
to show HH* ! (Fy[a, b, c]/(ab, bc)) = 0. This is what we now set out to prove.

3. KOSZUL ALGEBRAS

For a vector space V', let T'(V') denote its graded tensor algebra over Fy. We recall
that a graded Fo-algebra A = @, A" is called quadratic if the map T(AY) — Ais
surjective with kernel generated by elements in A' ® A'. We see that any quadratic
algebra A is canonically isomorphic to T'(V)/(R), for a vector space of generators
V' and a subspace of relations R € V ® V. For any quadratic algebra we can define
the following chain complex of free graded A-bimodules.
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Definition 3.1. Let A = T(V)/(R) be a quadratic algebra. For n > 0 and 1 <
i<n—1,let

(3) X =VEIlQReVE T cver
and

n—1
K, =()xrcve
1=1

Here we interpret the empty intersection as the whole space, i.e., K = Fy and
K| = V. The Koszul complex K(A°, A) of A is defined as the nonnegative chain
complex of graded A-bimodules with

K,(A°A)=ARK, ®A,
and differential d,, induced by the one in the bar resolution B(A), i.e.,
dp: @V ® U, Qb a1 @2 Q- QU @b+ a®u1 @ Qupd.

Definition 3.2. A quadratic algebra A is called Koszul if its Koszul complex
K(A®, A) is a resolution of A as a graded A-bimodule, i.e., if H,(K(A% A)) =0
for n > 0 and Hy(A°%, A) = A.

We will now show that A = Fs[a, b, c]/(ab, bc) is Koszul. Consider the Fa-vector
spaces V := Spang, {a, b, c} and

R = Spang, {a ®b,b®a,cQ®b,b®c,a®@c+cRa} S VRV,

chosen such that we can identify A with T(V)/(R), and in particular we see that
A is quadratic. Let e := a® c+ c® a. In the space X[ defined in we consider
the set B™ consisting of strings x = x - - - &, of symbols from the set {a, b, ¢, e} such
that |z1] + -+ + |zx] = n and ca does not occur as a substring of . Here |z;]
denotes the degree of the symbol z;, so |a| = |b] = |¢| = 1 and |e| = 2. We will
identify the strings in B™ with tensors in V®". As an example we see that

B? = {a®a,a®b,a®c,b®a,bR®b,b®c,c®b,c®c,e}.

We also introduce the subsets B}* for 1 < i < n — 1 consisting of the strings in
B"™ where the (i,i + 1)-part is in R, where we count e with multiplicity 2. More
precisely, for a string x € B" and an integer ¢, 1 <@ < n, we obtain a symbol z;
by the following process. We first modify the string x into a string x’ of length n
by doubling every occurrence of e in z, and we then set z(;) = z}. We now define

Bl = {z € B" | w(;)7(;41) € {ab, ba, cb, bc, eb, be, ee}}.

For instance, for the string x = bebe we get that 2’ = beebee such that, e.g., x4y = b,
and we see that z € BS for all 1 <i < 5.

Lemma 3.3. For each n, the set B" is a basis for VO,

Proof. From the basis {a,b,c} of V we obtain a standard basis of V®" consisting
of the pure tensors in the symbols {a, b, c}. We obtain B" from this standard basis
using only elementary column operations, hence showing that B™ is also a basis.
Starting from the standard basis, we can replace each occurrence of c®a with e by
adding a suitable linear combination of standard pure tensors. More formally, we
will do this using induction.

For i = 0, let B™® be the set of strings x1 - - - 7 in the symbols {a, b, ¢, e} satisfying
the conditions:
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o]+ [zl =,

e there is at most ¢ occurrences of e,

e the substring ca only occurs after all the e’s,

e if there is less than i occurrences of e, there are no occurrences of ca.

We see that B™? is the standard basis, while B™* = B" for large enough i (e.g.,
for i > n/2). We will show that each B™**1 can be obtained from B™! using only
elementary column operations, where we have identified the strings with tensors in
VOn, We obtain B! from B™! in the following manner. If 2 € B™' have no
occurrence of ca, then we already have x € B™*!, so we do nothing. Otherwise,
there are precisely ¢ occurrences of e and at least one occurrence of ca in z. Consider
the string x’ obtained by replacing the first occurrence of ca with ac. We see that
2’ € B™" and we add 2’ to x to obtain the tensor z’ + 2 € B™*1. All tensors in
B™*! can be obtained in precisely one of these two ways, hence we obtain B!
from B™® as wanted. O

Now we can prove the main result of this section.
Proposition 3.4. The quadratic algebra A = Fy[a, b, c]/(ab,bec) is Koszul.

Proof. We will show that, for each n > 0, the set B" is a basis for V®" which
distributes the subspaces X7',..., X]'_, i.e., for each X* the subset B]* < B" forms
a basis for X'. By [12], Chapter 2, Theorem 4.1], this implies that A is Koszul. By
definition, X" = V®~1 @ R® V"~"~! hence from the standard basis of V and the
basis R = {a®b, b®a, c®b, b®c, e} of R, we obtain a basis of X consisting of strings
x in the symbols {a, b, ¢, e} with at most one e and x(;)7(;4+1) € R, where x(;) is the
notation introduced to define B}'. Using a similar induction argument as above,
we replace each occurrence of ca with e in this basis using only elementary column
operations to obtain a new basis for X*. This gives precisely the set B} < B",
which shows that B™ distributes X7, ..., X} g

y“An—1-

Remark 3.5. As a consequence of the proof of Proposition we see that Bl =
M=, By is a basis for K7, = (1" X?*. This basis B, can be explicitly described as
the set of strings @ - - - 7 in the symbols {a, b, ¢, e} satisfying that |z1| + -+ + |z|
and the symbols in the string alternates between b and one from the set {a,c,e}.
For example, we get

(4) B} = {aba, abc, cba, cbe, bab, beb, eb, be}
and

(5) B} = {abab, abeh, beba, bebe, baba, babe, cbab, cbeb, abe, eba, che, ebe, beb}.

4. PROOF OF THE MAIN RESULT
By Proposition [2.6]and Corollary [2.8] Theorem [I.1] will follow from the following:
Theorem 4.1. We have HH* ™ (Fy[a, b, ¢]/(ab, bc)) = 0.

Proof. Since A is Koszul, the natural inclusion K (A, A), A) — B(A) is a quasi-
isomorphism. Hence we can compute HH(A) as the cohomology of the complex
Hom 4. (K (A, A), A). We first observe that we have

K(A%A), =AQK, @ A~ A*Q K/,
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as graded A-bimodules. Using the contracting isomorphism

Hom 4. (A° ® K,,, A) =~ Homg, (K, A)
of graded vector spaces we see that HH(A) can be computed as the cohomology of
the following complex of graded vector spaces:

A) o Homyg, (K, A) LA Homy,, (K,

!
.- —>H()7mF2(K n+1s

n—1»

A) - -
where the differential 0" is given by

()1 ®  ®upt1) =v1f(12@ - @Uny1) + f(11 @ - @ Vn)Vpt1.
To compute HH* ! (A) = 0, we need to show that

/41y 02 ;og2y 0% /7 43
Homp, (K5, A*) — Homy, (K3, A°) — Homg, (K}, A°)

is exact in the middle, i.e., Im 0% = Ker 0.

First we will describe Ker 3. To do so, we use the following notation for elements
in the basis B) of K}. Since a and ¢ play symmetrical roles in A, we will introduce
the notation (a|c¢) to mean that each of a and ¢ can be used in the expression.
For example, for a map f € Homp, (K}, A%), the equation f((alc) ® b) = 0 would
mean that we have two equations f(a ® b) = 0 and f(c®b) = 0. If there are
several instances of (alc) in the expression, each instance can be replaced by a or ¢
independently of each other.

Lemma 4.2. A map f € Homp, (K%, A%) lies in Ker 0% if and only if it satisfies the
following relations:

i) f(b® (alc) ®b) € Spang, {v*},
ii) f((ale) ®b® (alc)) € Spang, {a®, ac, ¢*},
iii) a(f(cRb®a)+ f(e®b)) + cf(a®b®a) =0,

(fla®b®c)+ f(e®b)) +af(c®b®c) =0,

( )
( )
v) a(fla®b®c)+ f(b®e)) +cf(a®b®a) =0,
c(flce®@b®a)+ f(b®e)) +af(c®b®c) =0,

vii) fle®Db) + f(b®e) € Spang,_{a®, ac, c*}.

Proof. A map f € Homp, (K%, A%) is in the kernel of 03 if and only if 03(f) vanishes
on all elements of the basis Bj. We now evaluate 0(f) on B} as described in (F).
First, since (alc)b = 0 in A2, the equation

*(f)((ale) ®b® (ale) @) = (ale) f(b® (ale) ®b) + f((ale) ®b® (ale))b =0

implies f(b® (alc) ® b) € Spang, {b?}, and f((alc) ® b® (alc)) € Spang, {a?, ac, ¢*}.
The equation 0*(f)(b ® (alc) ® b® (alc)) = 0 gives the same relations. This shows
that and are necessary and sufficient. Second, and are imposed by
the equations

P(fe®@b®a) =af(c®b®a) +cfla®b®a) + fle®b)a =0

vi)

(
(
(
(iv)
(
(
(

and
P(He®@b®c) =af(c®b®c)+cf(a®@b®c) + f(e®@b)c = 0.
Similarly, and are imposed by the equations

Pla®@b®e)=af(b®e)+ f(a®@b®a)c+ f(a®b®c)a =0
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and
P(Hc@b®e) =cf(b®e) + f(c®bRa)c+ flc®b®c)a = 0.
Finally, the condition

PHb@e@b) =bf(e@b) + f(b@e)b =0
gives the relation f(e ® b) + f(b® €) € Spang, {a?, ac, ¢*} which is (vi). O

Notation 4.3. For v € B/, and z € A, we write F,(v; z) for the map in Homp, (K/,, A*)
sending v to x and other basis vectors in B], to zero.

Lemma 4.4. The set of maps
Sy = {82(F2(b®a;b)) = B(b®a®b;b?),
Fs(b®c®b;b?),

P(F(b®cb)) =
*(Fy(e;b)) = F3(b®e;b?) + F3(e ® b; b?),

P (Fy(c®bsa)) = F3(e®b;a?) + F3(c®b®a;a®) + F3(c®b® c; ac),
P(F(b®ca)) = F3(b®e;d®) + F3(a®@b®c;a®) + F3(c®b® c; ac),
P (Fy(a®b;a)) = F3(e®@b;ac) + F3(a®b® c;ac) + F3(a @ b® a; a?),
P (Fy(a®b;c)) = F3(e®b;c) + F3(a®@b®c;c?) + F3(a®b® a; ac),
P(F(b®asc)) = F3(b®@e;c?) + F3(c®b®a; ¢®) + F3(a ®b® a; ac),
P (Fy(c®b;c)) = F3(e®bjac) + F3(c®b® a;ac) + F3(c®b® c; c?),
P(F(b®c;c)) = F3(b®e;ac) + F3(a®@b®c;ac) + F3(c®b®c; 02)}

is a basis of Ker 03.

Proof. We consider the set S} of Fa-linear maps K4 — A? defined by
Sh = {F3(b®a®b; V), F3(b®c®@b;b?), F3(b® e;b%), F3(e @ b; a?), F3(b ® e; a?),

Fg(a®b®a;a2),F3(e®b; 02),F3(b®6;02),F3(C®b®a;ac),Fg(b@)e;ac)}.

We observe that each element of S occurs exactly once as a term in one of the
maps in S3. Since Ay = {a?,b%,c?,ac} € A? is a basis of A?, it follows that the
set Sz is linearly independent. It remains to show that S3 generates Ker 03. Let
f € ker 9 be an arbitrary element. For v € B and z € Ay, let p(v;z) € Fo be the
coefficient such that, for all v € Bj,

fw) =D ¢v;z)z.
€A

Again, since each element of 8§ occurs exactly once as a term in one of the maps in
S3, we can assume by adding a linear combination of the elements of S5 to f that
the coefficients

pb®@a®bib?), p(b®c®b;b?), p(b @ e;b?), p(e ® b a®), p(b® e5a”),
Pla®b®a;a?), p(e@b;c?), p(b®e;c?), p(c@b® a; ac), o(b® e; ac)

are all zero. Now it suffices to show that then f must be the zero map. Since
f € ker 03, f must satisfy the relations in Lemma We see that implies that
o(b® (a|c) ®b;z) = 0 for = # b2. Hence we have f(b® (a|c) ® b) = 0. We also see
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that implies that p(b®e; b?) = (e®b; b?) = 0. We therefore have f(b®e) = 0.
Equation (v)) implies that p(a®b®a; ¢?) = 0, and (i) implies that ¢(a®b®a; b?) = 0.
This shows that either f(a®b®a) = acor f(a®b®a) = 0. If f(a®b®a) = ac, then
implies that f(a®b®c) = c2. Now forces f(e®b) = 2, which contradicts
o(e ®b;c?) = 0. We thus have f(a ®b® a) = 0. From and (), we then get
fla®b®c) = 0. From we deduce that (e ® b;ac) = p(c®b® a;ac) = 0,
and hence f(e®b) = 0. It now follows from and that f(c®b®a) = 0.
Finally, from and we get f(c®b®c) = 0. This shows that f vanishes on

all elements of the basis Bj, and hence f is the zero map. (]

Since the elements in the set S; belong to the subset Im 62 of Ker 8, Lemma

implies Im 02 = Ker ¢3. This finishes the proof of Theorem O
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