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Homotopy theory of smooth
compactifications of algebraic varieties

Gereon Quick

Abstract. In this short note we show that the homotopy category of
smooth compactifications of smooth algebraic varieties is equivalent to
the homotopy category of smooth varieties over a field of characteristic
zero. As an application we show that the functor sending a variety to
the p-th step of the Hodge filtration of its complex cohomology is rep-
resentable in the homotopy category of simplicial presheaves on smooth
complex varieties. The main motivation are recent applications of ho-
motopy theory to Deligne–Beilinson cohomology theories.
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1. Introduction

Let X be a smooth algebraic variety. In order to have well-behaved al-
gebraic invariants it is often necessary to assume that X behaves like a
compact manifold, i.e., that X is complete or projective. If X is not com-
plete, several kinds of unpleasant phenomena may occur. For example the
cohomology groups may be infinite-dimensional or, over the complex num-
bers, the Hodge filtration on the de Rham cohomology may contain very
little information.

There are different techniques to remedy these defects. Over a field k of
characteristic zero, Hironaka’s theorem on resolutions of singularities shows
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that every smooth variety over k has a smooth compactification. This means
that there is a smooth projective variety over k which contains X as an open
subset such that the complement D = X̄ −X is a normal crossing divisor.
If k = C such a smooth compactification provides a way to define the Hodge
filtration on the complex cohomology of X (see [8]). Beilinson used smooth
compactifications to define a new version of Deligne cohomology (see [3]).
In [4], Beilinson applies smooth compactifications and several arithmetic
variations of this notion to study derived de Rham cohomology.

In recent approaches homotopy theory of simplicial presheaves is used to
provide applications and generalizations of Deligne–Beilinson cohomology
(see [7] for applications to the regulator map in algebraic K-theory, [14] for
a construction of motivic Arakelov cohomology, and [15] for a generalization
of Deligne–Beilinson cohomology with potential applications to the cycle
map). All these approaches require that the functor X 7→ F pH∗(X;C)
which sends a complex variety X to the p-th step of the Hodge filtration
of its complex cohomology is representable in the homotopy category. By
working with presheaves on the big site of smooth varieties, one would like
to avoid the choice of a particular compactification. The obvious solution is
to take into account all compactifications at once.

The purpose of this short note is to show that the homotopy category of
smooth compactification and the homotopy categories of smooth varieties
are in fact equivalent. In more detail, let Sm = Smk be the category of
smooth varieties over a field k of characteristic zero and Sm be the category
of pairs (X, X̄) of a smooth variety X together with a smooth compactifi-
cation X̄. We show that the forgetful functor u : Sm→ Sm, (X, X̄) 7→ X,
induces a pair of Quillen equivalences

Lu∗ : hosPre(Sm)
∼↔ hosPre(Sm) : Ru∗

on the homotopy categories of simplicial presheaves. This is a reinterpre-
tation of the insight of Beilinson in [4] in terms of the homotopy theory of
simplicial presheaves.

As an application of this observation we study in the last section how, for
every p ≥ 0, the functorX 7→ F pH∗(X;C) is representable in hosPre(SmC).

2. Generalized bases of topologies and homotopy theory

2.1. Simplicial presheaves and hypercovers. Let T be an essentially
small site. We denote by sPre(T ) the category of simplicial presheaves on
T . There are several important model structures on the category sPre(T )
(see [17], [5], [10], [16].).

We will consider the local projective model structure as in [5] and [10].
We start with the projective model structure on sPre(T ). A map F → G
in sPre(T ) is called a

• projective weak equivalence if F(X) → G(X) is a weak equivalence
in sS for every X ∈ T ;
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• projective fibration if every F(X)→ G(X) is a fibration in sS;
• projective cofibration if it has the left lifting property with respect

to all trivial fibrations.

In order to obtain a local model structure, i.e., one which respects the
topology on the site T , we can localize the projective model structure at a
specific type of hypercovers. We briefly recall the most important notions.

Recall from [1] that a map f : F → G of presheaves on T is called a
generalized cover if for any map X → F from a representable presheaf X to
F there is a covering sieve R ↪→ X such that for every element U → X in
R the composite U → X → F lifts through f .

Moreover, Dugger and Isaksen [12, §7] give the following characterization
of local acyclic fibrations and hypercovers. A map f : F → G of simplicial
presheaves on T is a local acyclic fibration if for every X ∈ T and every
commutative diagram

∂∆n ⊗X //

��

F

��

∆n ⊗X // G
there exists a covering sieve R ↪→ X such that for every U → X in R, the
diagram one obtains from restricting from X to U

∂∆n ⊗ U //

��

F

��

∆n ⊗ U

::

// G
has a lifting ∆n⊗U → F . Note that this implies in particular that the map
F0 → G0 of presheaves is a generalized cover.

Definition 2.1. Let X be an object of T and let U be a simplicial presheaf
on T with an augmentation map U → X in sPre(T ). This map is called a
hypercover of X if it is a local acyclic fibration and each Un is a coproduct
of representables.

If U → X is a hypercover, then the map U0 → X is a cover in the topology
on T . Moreover, the map U1 → U0×X U0 is a generalized cover. In general,
for each n, the face maps combine such that Un is a generalized cover of a
finite fiber product of different Uk with k < n.

Since the projective model structure on sPre(T ) is cellular, proper and
simplicial, it admits a left Bousfield localization with respect to all maps

{hocolimU∗ → X}
where X runs through all objects in T and U runs through the hypercovers
of X. The resulting model structure is the local projective model structure
on sPre(T ) (see [5] and [10]). The weak equivalences, fibrations and cofi-
brations in the local projective model structure are called local weak equiva-
lences, local projective fibrations and local projective cofibrations respectively.
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The local acyclic fibrations that were defined above are exactly the maps
which are both local weak equivalences and local projective fibrations (see
[11, §3]). We denote the resulting homotopy category by hosPre(T ).

Dugger, Hollander and Isaksen showed that the fibrations in the local
projective model structure on sPre(T ) have a nice characterization (see [11,
§§3+7]). Let U → X be a hypercover in sPre(T ) and let F be a projective
fibrant simplicial presheaf. Since each Un is a coproduct of representables,
we can form a product of simplicial sets

∏
aF((Un)a) where a ranges over

the representable summands of Un. The simplicial structure of U defines a
cosimplicial diagram in sS∏

a

F(Ua0 ) ⇒
∏
a

F(Ua1 )
−→→
−→
· · · .

The homotopy limit of this diagram is denoted by holim∆F(U).
Following [11, Definition 4.3] we say that a simplicial presheaf F satisfies

descent for a hypercover U → X if there is a projective fibrant replacement
F → F ′ such that the natural map

(1) F ′(X)→ holim
∆
F ′(U)

is a weak equivalence. It is easy to see that if F satisfies descent for a hyper-
cover U → X, then the map (1) is a weak equivalence for every projective
fibrant replacement F → F ′. By [11, Corollary 7.1], the local projective
fibrant objects in sPre(T ) are exactly those simplicial presheaves which are
projective fibrant and satisfy descent with respect to all hypercovers U → X.
For our final applications we will need the following facts.

Lemma 2.2. Let F be a simplicial presheaf that satisfies descent with respect
to all hypercovers. Then every fibrant replacement F → Ff in the local
projective model structure is a projective weak equivalence, i.e., for every
object X ∈ T the map

F(X)→ Ff (X)

is a weak equivalence of simplicial sets.

Proof. Let g : F → F ′ be a fibrant replacement in the projective model
structure. Since g is a projective acyclic cofibration, it is also a local projec-
tive acyclic cofibration. Hence in order to show that g is a fibrant replace-
ment in the local projective model structure, it suffices to show that F ′ is
fibrant in the local projective model structure. But by the assumptions, F ′
is projective fibrant and satisfies descent with respect to all hypercovers. By
[11, Corollary 7.1], this show that F ′ is local projective fibrant. Moreover,
if h : F → Ff is any local projective fibrant replacement, then, since g is a
local acyclic cofibration, there is an induced map j : F ′ → Ff that makes
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the triangle

F h //

g

��

Ff

F ′
j

>>

commute. By the two-out-of-three property for weak equivalences we know
that j is a local weak equivalence as well. But since the local projective
model structure is the left Bousfield localization of the projective model
structure, a local weak equivalence between local fibrant objects is a projec-
tive weak equivalence. Hence h is a projective weak equivalence too. �

Proposition 2.3. Let F be a simplicial presheaf that satisfies descent with
respect to all hypercovers and let X be an object of T . Then, for every
projective fibrant replacement g : F → F ′, the natural map

HomhosPre(T )(X,F)→ π0(F ′(X))

is a bijection.

Proof. By Lemma 2.2, the map g : F → F ′ is a local projective fibrant
replacement in sPre(T ). Hence, since the representable presheaf X is lo-
cal projective cofibrant, we can compute the morphisms from X to F in
hosPre(T ) via the isomorphism

HomhosPre(Sm)(X,F) ∼= π(X,F ′)
where π(X,F ′) denotes the set of simplicial homotopy classes of maps. Since
X is representable, this set is just given by the set of connected components
of the simplicial set F ′(X), i.e., we have π(X,F ′) ∼= π0(F ′(X)). �

2.2. Generalized base of a topology and local model structures.
Let V be an essentially small site. We recall Beilinson’s generalization of
the notion of a base for V from [4, §2.1].

Definition 2.4. A base for V is a pair (B, u), where B is an essentially
small category and u : B → V is a faithful functor that satisfies the following
property:

(∗) For any V ∈ V and a finite family of pairs (Bα, fα), Bα ∈ B, fα :
V → u(Bα), there exists a set of objects B′β ∈ B and a covering family

{u(B′β)→ V } such that every composition u(B′β)→ V → u(Bα) lies in

HomB(B′β, Bα) ⊂ HomV(u(B′β), u(Bα)).

Our main example for this situation is the forgetful functor u from the
category of smooth compactifications B = Sm to the site V = Sm of smooth
varieties over a field of characteristic zero. We will discuss this example in
detail in the next section.

Definition 2.5. Let (B, u) be a base for V. A covering sieve in B is defined
to be a sieve whose image under u is a covering family in V.
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By [4, Proposition 2.1], covering sieves in B form a Grothendieck topology
on B and the functor u is continuous. Moreover, u induces an equivalence
of toposes.

Our goal is to transfer these results to a comparison of homotopy cate-
gories. Let sPre(B) and sPre(V) denote the categories of simplicial presheaves
on B and V respectively. The functor u induces a pair of adjoint functors

u∗ : sPre(B)↔ sPre(V) : u∗.

The right adjoint u∗ is given by composition with u, i.e.,

u∗F(B) = F(u(B)).

The left adjoint u∗ is defined by sending a simplicial presheaf G on B to the
simplicial presheaf on V

V 7→ u∗G(V ) := colim
(B,f)∈C(V )

G(B)

where the colimit is taken over the category C(V ) of pairs (B, f), B ∈ B,
f : V → u(B), with

HomC(V )((B, f), (B′, f ′)) := {g ∈ Hom(B′, B) : u(g) ◦ f ′ = f},

and we set G(B, f) := G(B).
Since the functor u : B → V is continuous, the left adjoint u∗ preserves

generalized covers of presheaves. Nevertheless, u∗ does not in general pre-
serve hypercovers of simplicial presheaves. But if we assume that u∗ sends
hypercovers in sPre(B) to hypercovers in sPre(V), then we get the following
homotopy analogue of [2, Theorem 4.1] and [4, Proposition 2.1].

Theorem 2.6. Let V be an essentially small site and (B, u) be a base for
V. We assume that u∗ preserves finite limits. Then the pair (u∗, u∗) is a
Quillen equivalence. Hence we obtain adjoint derived equivalences

Lu∗ : hosPre(B)
∼↔ hosPre(V) : Ru∗.

Proof. The right adjoint u∗ preserves projective weak equivalences and
projective fibrations. Hence (u∗, u∗) is a Quillen pair of adjoint functors
on the projective model structure. Since u∗ preserves hypercovers, it is a
Quillen left adjoint on the local projective model structure as well. It re-
mains to show that (u∗, u∗) is a pair of Quillen equivalences. This follows
from Beilinson’s argument. Let aF : F → u∗u

∗F , for F ∈ sPre(B), and
bG : u∗u∗G → G, for G ∈ sPre(V), denote the adjunction maps. By [4,

Proposition 2.1], the sheafifications ãF and b̃G of these maps in the topolo-

gies of B and V respectively are isomorphisms. In particular, ãF and b̃G
are local weak equivalences. Since the map from a simplicial presheaf to its
sheafification is a local weak equivalence, the two-out-of-three property for
local weak equivalences shows that aF and bG are local weak equivalences.
Hence u∗ and u∗ are Quillen equivalences. �
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Remark 2.7. In the statement of Theorem 2.6 we required that u∗ preserves
finite limits. But the proof only uses that u∗ preserves hypercovers. Since
we do not know of any example of interest where u∗ preserves hypercovers
but not finite limits, the theorem is formulated with the assumption that u∗

preserves finite limits.

3. Smooth compactifications

3.1. The forgetful functor. We now apply the arguments from the pre-
ceding section to our main example. Let k be a field of characteristic zero.
We will use the term variety for a separated scheme of finite type over k.
Let Smk,Nis = Sm be the site of smooth varieties over k with the Nisnevich
topology.

Let Sm be the category whose objects are smooth compactifications, i.e.,
pairs (X, X̄) = (X ⊂ X̄) consisting of a smooth variety X embedded as an
open subset of a projective variety X̄ and having the property that X̄ −X
is a normal crossing divisor which is the union of smooth divisors. A map
from (X, X̄) to (Y, Ȳ ) is a commutative diagram

X //

��

X̄

��

Y // Ȳ .

By Hironaka’s theorem [13], every smooth variety over k admits a smooth
compactification. Moreover, for a given smooth variety X, the category
C(X) of all smooth compactifications of X is filtered. For if X̄1 and X̄2

are two smooth compactifications of X, we define X̄ to be a resolution of
singularities of the closure of the image of the diagonal of X in X̄1 × X̄2.
Then X̄ is a smooth compactification of X with morphisms

X̄ //

��

X̄1

X̄2

which induce the identity on X. Similarly, if we are given two morphisms

j1, j2 : X̄ ′ ⇒ X̄ ′′

of smooth compactifications of X, then, by taking a resolution of singulari-
ties of the closure of the diagonal as before, we can construct a third smooth
compactification X̄ of X such that there is a commutative diagram in Sm

X̄

��

// X̄ ′

��

X̄ ′ // X̄ ′′.
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The forgetful functor

u : Sm→ Sm

(X, X̄) 7→ X

induces as above a pair of adjoint functors on the categories of simplicial
presheaves

u∗ : sPre(Sm)↔ sPre(Sm) : u∗.

The left adjoint u∗ is given by sending a simplicial presheaf F on Sm to the
simplicial presheaf

X 7→ u∗F(X) = colim
C(X)

F(X̄).

The following proposition can be proved as in [4, §2.5].

Proposition 3.1. The pair (Sm, u) is a base for the site Sm with the
Nisnevich topology.

Proof. Let X ∈ Sm and {(Uα, Ūα)} be a finite collection of pairs in Sm
with maps fα : X → Uα in Sm. To show that (Sm, u) is a base for Sm,
it suffices to embed X into a pair (X, X̄) such that the maps fα extend to
maps (X, X̄) → (Uα, Ūα). Therefore, let X̄ ′ be a smooth compactification
of X. Then let X̄ be a smooth compactification of the closure of the image
of X in X̄ ′ ×

∏
α Ūα. The pair (X, X̄) is equipped with induced maps

(X, X̄)→ (Uα, Ūα) which extend the fα. �

Lemma 3.2. The left adjoint u∗ : sPre(Sm)→ sPre(Sm) preserves finite
limits. In particular, u∗ preserves hypercovers.

Proof. Let limi∈I Fi be the limit of a finite diagram in sPre(Sm). For a
variety X ∈ Sm, we have

u∗(lim
i
Fi)(X) = colim

C(X)
((lim

i
Fi)(X̄)).

Since the limit of simplicial presheaves can be calculated objectwise, and
since the finite limit commutes with the filtered colimit over C(X), we get

u∗(lim
i
Fi)(X) ∼= lim

i
(colim
C(X)

Fi(X̄)) = lim
i
u∗Fi(X̄).

Hence obtain an isomorphism of simplicial presheaves

u∗(lim
i
Fi) ∼= lim

i
(u∗Fi). �

As a consequence of Theorem 2.6 and Lemma 3.2 we get the following
result.

Corollary 3.3. The pair

u∗ : sPre(Sm)↔ sPre(Sm) : u∗

is a Quillen equivalence. Hence we obtain adjoint derived equivalences

Lu∗ : hosPre(Sm)
∼↔ hosPre(Sm) : Ru∗.
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Remark 3.4. The results of this section do not depend on the fact that we
are working in the Nisnevich topology. In [4], Beilinson uses the h-topology
generated by covering families which are universal topological epimorphisms.
Our choice of the Nisnevich topology here is due to the situation of the next
section which is related to the homotopy theoretical approach to general-
ized Deligne–Beilinson cohomology theories and its connections to motivic
homotopy theory in [15].

3.2. Logarithmic differential forms. Let k be the complex numbers C.
For a smooth complex variety X, let X̄ be a smooth compactification of
X and let D := X̄ − X denote the complement of X. The divisor D is a
normal crossing divisor which is the union of smooth divisors. Let Ω1

X̄
〈D〉

be the locally free sub-module of j∗Ω
1
X generated by Ω1

X and by dzi
zi

where
zi is a local equation for an irreducible local component of D. The sheaf
Ωp
X̄
〈D〉 of meromorphic p-forms on X̄ with at most logarithmic poles along

D is defined to be the locally free sub-sheaf
∧p Ω1

X̄
〈D〉 of j∗Ω

p
X̄

. The Hodge
filtration on the complex cohomology of X can be defined as the image

(2) F pHn(X;C) := Im (Hn(X̄; Ω∗≥p
X̄
〈D〉)→ Hn(X;C)).

It is a theorem of Deligne’s [8, Théorème 3.2.5 and Corollaire 3.2.13] that
for smooth complex algebraic varieties, the homomorphism

Hn(X̄; Ω∗≥p
X̄
〈D〉)→ Hn(X̄; Ω∗X̄〈D〉)

is injective and the image is independent of the choice of X̄. In particular,
the map in (2) induces an isomorphism

(3) Hn(X̄; Ω∗≥p
X̄
〈D〉) ∼= F pHn(X;C) ⊂ Hn(X;C).

We denote by Ω
∗

the presheaf of differential graded C-algebras on Sm
that sends a pair X ⊂ X̄ with D := X̄ − X to Ω∗

X̄
〈D〉(X̄). For any given

integer p ≥ 0, we denote by Ω
∗≥p

the presheaf on Sm that sends a pair

X ⊂ X̄ to Ω∗≥p
X̄
〈D〉(X̄).

Let
Ω∗≥p
X̄
〈D〉 → A∗≥p

X̄
〈D〉

be any resolution by cohomologically trivial sheaves which is functorial in
X ⊂ X̄ and which induces a commutative diagram

Ω∗≥p
X̄
〈D〉(X̄) //

��

Ω∗X(X)

��

A∗≥p
X̄
〈D〉(X̄) // A∗X(X).

For example, A∗≥p
X̄
〈D〉 could be the Godemont resolution ([8, §3.2.3]). The

reader should note that A∗≥p
X̄
〈D〉 are double complexes, though we will only

consider their total complexes.
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We denote the presheaf of complexes on Sm that sends a pair (X, X̄) to

A∗≥p
X̄
〈D〉(X̄) by Ā∗≥p, and let

Ω
∗≥p → Ā∗≥p

be the associated map of complexes of presheaves on Sm.
Our final goal is to show that the functor X 7→ F pHn(X;C) is repre-

sentable in hosPre(Sm). Therefore, we recall the Dold–Kan correspon-
dence on the level of presheaves which connects presheaves of complexes to
simplicial presheaves.

For a chain complex of presheaves of abelian groups C∗ on Sm, we denote
by Hi(C∗) the presheaf U 7→ Hi(C∗(U)). For a cochain complex C∗ we
will denote by C∗ its associated chain complex given by Cn := C−n. For
any given n, we denote by C∗[n] the cochain complex given in degree q by
Cq[n] := Cq−n.

Applying the normalized chain complex functor objectwise, we obtain a
functor G 7→ N(G) from simplicial sheaves of abelian groups to chain com-
plexes of sheaves of abelian groups. Then we have πi(G) ∼= Hi(N(G)). The
functor has a right adjoint K again obtained by applying the corresponding
functor for chain complexes objectwise. For a presheaf of chain complexes C∗
on Sm and an integer n, we denote by K(C∗, n) := K(C∗[n]) the Eilenberg–
MacLane simplicial presheaf corresponding to C∗[n] under the Dold–Kan
correspondence.

The following result is an important ingredient in the homotopy theoret-
ical approach to Deligne–Beilinson cohomology in [15].

Theorem 3.5. For every smooth complex variety X, there is a natural
isomorphism

HomhosPre(Sm)(X,u
∗K(Ā∗≥p, n)) ∼= F pHn(X;C).

Proof. Let Hn(Ā∗≥p(X̄)) be the nth cohomology group of the complex
of global sections Ā∗≥p(X̄). Since the sheaf AX̄〈D〉∗≥p is cohomologically
trivial, it follows that Hn(Ā∗≥p(X̄)) is isomorphic to the sheaf cohomol-

ogy Hn(X; Ā∗≥p
X̄
〈D〉) which, by Deligne’s isomorphism (3) ([8, Corollaire

3.2.13]) and the choice of Ā∗≥p
X̄
〈D〉, is isomorphic to F pHn(X;C) for any

compactification X̄ of X. Since each K(Ā∗≥p, n)(X̄) is a Kan complex, the
Dold–Kan correspondence implies that, for every n, q ≥ 0, there is a natural
isomorphism

πq(K(Ā∗≥p, n)(X̄)) ∼= Hn−q(Ā∗≥p(X̄)).

Since the category C(X), over which we take the colimit to define u∗, is
filtered, and since homotopy groups and cohomology commute with filtered
colimits, this implies that there is a natural isomorphism

(4) πq(u
∗K(Ā∗≥p, n))(X)) ∼= F pHn−q(X;C).
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The complex cohomology functor X 7→ H∗(X;C) satisfies descent for the
Nisnevich topology in the sense that every distinguished square in the Nis-
nevich topology

(5) U ×X V

��

// V

��

U // X

induces a long exact Mayer–Vietoris sequence. By [8, Théorème 1.2.10 and
Corollaire 3.2.13], this sequence respects the Hodge filtration and yields a
long exact sequence

. . .→ F pHq−1(X;C)→ F pHq(U ×X V ;C)→ F pHq(U ;C)⊕ F pHq(V ;C)

→ F pHq(X;C)→ . . .

Hence the isomorphism (4) implies that the simplicial presheaf

F := u∗K(Ā∗≥p, n)

satisfies descent for the Nisnevich topology in the sense that every distin-
guished square in the Nisnevich topology (5) induces a long exact sequence

. . .→ πq+1(F(X))→ πq(F(U ×X V ))→ πq(F(U))⊕ πq(F(V ))

→ πq(F(X))→ . . .

By [5, Lemma 4.2], this implies that any projective fibrant replacement F ′ of
the simplicial presheaf F = u∗K(Ā∗≥p, n) is already a local projective fibrant
replacement of F . Hence F satisfies descent with respect to all Nisnevich
hypercovers. By Proposition 2.3 and (4), we get a natural isomorphism

HomhosPre(Sm)(X,u
∗K(Ā∗≥p, n)) ∼= F pHn(X;C). �

Remark 3.6. Another way to formulate the argument of the previous proof
would be to remark that the isomorphism (4) shows that the simplicial
presheaf F = u∗K(Ā∗≥p, n) satisfies the Brown–Gersten property for the
Nisnevich topology (see [6] for this notion in the Zariski topology and [18]
for the Nisnevich version). As in [18, §3.1] one could then deduce from this
that the set HomhosPre(Sm)(X,F) is in natural bijection with π(X,F).
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