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Abstract

We show that there is a stable homotopy theory of profinite spaces and use it for two main applications.
On the one hand we construct an étale topological realization of the stable A1-homotopy theory of smooth
schemes over a base field of arbitrary characteristic in analogy to the complex realization functor for fields
of characteristic zero.

On the other hand we get a natural setting for étale cohomology theories. In particular, we define and dis-
cuss an étale topological cobordism theory for schemes. It is equipped with an Atiyah–Hirzebruch spectral
sequence starting from étale cohomology. Finally, we construct maps from algebraic to étale cobordism and
discuss algebraic cobordism with finite coefficients over an algebraically closed field after inverting a Bott
element.
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1. Introduction

For the proof of the Milnor Conjecture Voevodsky invented algebraic cobordism, a new
cohomology theory for schemes represented by the Thom spectrum in his new framework of
A1-homotopy theory. Using the known topological realization functor for schemes over a field
of characteristic zero he linked his theory to the classical one by showing that the complex topo-
logical realization of the algebraic cobordism theory yields a map to complex cobordism.
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Independently, Levine and Morel constructed in a geometric way an algebraic cobordism
theory as the universal oriented cohomology theory on smooth schemes and used it to prove
Rost’s Degree Formula in characteristic zero.

Looking at the following diagram of cohomology theories

algebraic cobordism ?

algebraic K-theory étale K-theory

motivic cohomology étale cohomology

gives rise to the following questions. Is there an étale cobordism theory that fits into this picture?
Can the étale theories be described in some kind of stable homotopy theory? Can one replace
the complex realization functor in characteristic zero by a topological realization functor on the
stable motivic category for arbitrary characteristics? Is there a statement similar to the result of
Thomason that algebraic and étale cobordism with finite coefficients agree after inverting a Bott
element? In this paper we give an answer to these questions.

Sending a scheme to its étale topological type, first constructed by Artin–Mazur and Fried-
lander, gives naturally rise to cohomology theories. The idea is due to Eric Friedlander who
constructed in [13] a first version of an étale topological K-theory for schemes, which had been
developed further by Dwyer and Friedlander in [11]. This theory turned out to be a powerful tool
for the study of algebraic K-theory with finite coefficients. In particular, Thomason proved in
his famous paper [34] that algebraic K-theory with finite coefficients agrees with étale K-theory
after inverting a Bott element.

Čech and étale homotopy theory of schemes had also been studied by Cox [7] and Edwards–
Hastings [12] in the 1970s. At the end of the 1970s, in [33] Victor P. Snaith had constructed
a p-adic cobordism theory for schemes. His approach is close to the definition of algebraic K-
theory by Quillen. He defines for every scheme V over Fq , a topological cobordism spectrum
AFq,V . The homotopy groups of this spectrum are the p-adic cobordism groups of V . He has
calculated these groups for projective bundles, Severi–Brauer schemes and other examples.

In the beginning of the 1980s, Roy Joshua had already studied a version of étale (co-)bordism
as the generalized (co-)homology theory represented by a mod �-variant of MU on the étale
homotopy type as in Friedlander’s book [14], where Friedlander also shows the existence of an
Atiyah–Hirzebruch spectral sequence for such theories. Joshua had also defined an algebraic
bordism theory in analogy to the topological bordism relation and constructed a map from alge-
braic to étale bordism using the Thom–Pontrjagin construction and tubular neighbourhoods for
geometrically unibranched projective varietes over an algebraically closed field of arbitrary char-
acteristic. Joshua did not publish these ideas, since the interest in algebraic cobordism only arose
about ten years later. But his geometric constructions and his application to a Spanier–Whitehead
duality in étale homotopy theory can be found in [23].

In the present paper, we also follow Friedlander’s idea, but in a slightly different setting.
We consider the profinite completion Êt of Friedlander’s étale topological type functor of [14]
with values in the category of simplicial profinite sets Ŝ . Based on the work of Hovey [16]
and Morel [27], we construct a stable homotopy category ˆSH for simplicial profinite sets for any
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fixed prime number �. This is one possible category for the study of étale topological cohomology
theories. We define general cohomology theories such as étale K-theory, étale Morava K-theory
and étale cobordism as the theories represented by profinite spectra such as K̂U, ˆK(n) and M̂U,
respectively. This approach unifies different étale theories and coincides with the well-known
theories of étale cohomology and étale K-theory with finite coefficients over a separably closed
field, while étale cobordism is a new theory, which will be discussed in this paper.

An advantage of this approach is the immediate construction of an Atiyah–Hirzebruch spectral
sequence for smooth schemes over a field starting from étale cohomology and converging to étale
cobordism with finite coefficients.

For a base field without �-torsion and with finite �-cohomological dimension, for example a
separably closed, a finite or a local field, étale cobordism in even degrees is an oriented coho-
mology theory, i.e. it has Chern classes. Since the algebraic cobordism of Levine and Morel [25]
is universal for such functors, there is a canonical map from this algebraic to étale cobordism in
even degrees.

For the comparison with Voevodsky’s theory [35], we have to extend the étale topological
type functor to the stable homotopy category of smooth schemes over an arbitrary base field.
Isaksen [18] and Schmidt [32] extended independently the étale topological type functor to the
unstable A1-homotopy category. One of our main results is the existence of an étale realization
on the stable A1-homotopy category.

Theorem 1. Let k be an arbitrary base field. The functor Êt induces an étale realization of the
stable motivic homotopy category of P1-spectra:

LÊt :SH(k) → ˆSH2/Êt k.

In the theorem ˆSH2/Êt k denotes the stable homotopy category of profinite S2-spectra over
Êt k. In particular, the functor LÊt is equal to Êt on the suspension spectra of smooth schemes and
sends stable A1-equivalences between suspension spectra of smooth schemes to isomorphisms
in ˆSH2/Êt k. Over a separably closed base field the image of the motivic Thom spectrum is even
canonically isomorphic in the stable profinite homotopy category to the profinite M̂U-spectrum.

If k has no �-torsion and has finite �-cohomological dimension, this realization yields a canon-
ical map from algebraic to étale cobordism. The above map fits into a commutative diagram with
the map from the Levine–Morel theory.

Furthermore, we show that the absolute Galois group of the base field acts trivially on the
cobordism of the separable closure of the field. Together with the Atiyah–Hirzebruch spectral
sequence this allows us to determine the étale cobordism of local fields.

Finally, there is a candidate for a Bott element in Voevodsky’s theory that is mapped to an
invertible element in étale cobordism. Together with the Atiyah–Hirzebruch spectral sequence for
étale cobordism and the announced motivic Atiyah–Hirzebruch spectral sequence for algebraic
cobordism of Hopkins and Morel, the results of Levine [24] can be used to show that, at least
over an algebraically closed field, algebraic and étale cobordism with finite coefficients agree
after inverting a Bott element.

Conditional Theorem 2. Let X be a smooth scheme of finite type over an algebraically closed
field k with chark �= �. Let β ∈ MGL0,1(k;Z/�ν) be the Bott element. If we assume the exis-
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tence and convergence of an Atiyah–Hirzebruch spectral sequence from motivic cohomology to
algebraic cobordism, then there is an isomorphism

φ :

(⊕
p,q

MGLp,q
(
X;Z/�ν

))[
β−1] ∼=−→

⊕
p,q

M̂U
p

ét

(
X;Z/�ν

)
.

A similar result should hold over an arbitrary base field. But over a base field which is not
separably closed, the proposed definition of étale cobordism might not be the best possible. The
problem is that this homotopical construction does not reflect the twists in étale cohomology.
In order to solve this problem, Morel suggested to the author to study maps in the homotopy
theory relative over the base Êt k and to define étale cobordism via Êt(MGL) instead of M̂U.
Over a separably closed field both approaches agree. The author hopes to be able to discuss this
in future work.

The content of the paper is as follows. In the first section we construct the stable homotopy
category ˆSH of profinite spaces and discuss generalized cohomology theories of profinite spaces.
In the next section, ˆSH will turn out to be the target category for the stable étale topological real-
ization functor. It also yields a natural frame work for the study of generalized étale cohomology
theories such as étale cobordism, which we discuss in the fourth section. In the last part we will
compare algebraic and étale cobordism and will discuss the conditional theorem above.

2. Profinite spectra

2.1. Profinite spaces

We want to construct the target category for the stable étale realization, the stable homotopy
category of profinite spaces. Therefore, we recall some facts about profinite spaces and their
homotopy groups.

Let E denote the category of sets and let F be the full subcategory of E whose objects are
finite sets. Let Ê be the category of compact and totally disconnected topological spaces. We may
identify F with a full subcategory of Ê in the obvious way. The limit functor lim : pro-F → Ê ,
which sends a pro-object X of F to the limit in Ê of the diagram corresponding to X, is an
equivalence of categories.

We denote by Ŝ (respectively S) the category of simplicial profinite sets (respectively simpli-
cial sets). The objects of Ŝ (respectively S) will be called profinite spaces (respectively spaces).
The forgetful functor Ê → E admits a left adjoint ˆ(·) :E → Ê . It induces a functor ˆ(·) :S → Ŝ ,
which is called profinite completion. It is left adjoint to the forgetful functor | · | : Ŝ → S which
sends a profinite space to its underlying simplicial set.

For a profinite space X we define the set R(X) of simplicial open equivalence relations on X.
An element R of R(X) is a simplicial profinite subset of the product X × X such that, in each
degree n, Rn is an equivalence relation on Xn and an open subset of Xn × Xn. It is ordered by
inclusion. For every element R of R(X), the quotient X/R is a simplicial finite set and the map
X → X/R is a map of profinite spaces. When we consider the limit limR∈R(X) X/R in Ŝ , the
map X → limR∈R(X) X/R is an isomorphism, cf. [27, Lemme 1].

Let X be a profinite space. The continuous cohomology H ∗(X;π) of X with coefficients in
the profinite abelian group π is defined as the cohomology of the complex C∗(X;π) of contin-
uous cochains of X with values in π , i.e. Cn(X;π) denotes the set Hom ˆ(Xn,π) of continuous
E
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maps α :Xn → π and the differentials δn :Cn(X;π) → Cn+1(X;π) are the morphisms associ-
ating to α the map

∑n+1
i=0 α ◦ di , where di denotes the ith face map of X. If π is a finite abelian

group and Z a simplicial set, then the cohomologies H ∗(Z;π) and H ∗(Ẑ;π) are canonically
isomorphic.

Let � be a fixed prime number. Fabien Morel has shown in [27] that the category Ŝ can be
given the structure of a closed model category. The weak equivalences are the maps inducing
isomorphisms in continuous cohomology with coefficients Z/�; the cofibrations are the degree-
wise monomorphisms. The homotopy category is denoted by Ĥ. Morel has also given an explicit
construction of fibrant replacements in Ŝ , cf. [27, 2.1]. It is based on the Z/�-completion func-
tor of [5]. We denote the fibrant replacement in Ŝ of a profinite space X by X̂� and call it the
�-completion of X. If Y is a simplicial set, we also denote by Ŷ � the �-completion of its profinite
completion Ŷ .

The category Ŝ has a pointed analogue Ŝ∗ whose objects are maps ∗ → X in Ŝ , where ∗
denotes the constant simplicial set equal to a point. Its morphisms are maps in Ŝ that respect the
base points. The forgetful functor Ŝ∗ → Ŝ has a left adjoint, which consists in adding a disjoint
base point X �→ X+. The category Ŝ∗ has the obvious induced closed model category structure.
The product for two pointed profinite spaces X and Y in Ŝ∗ is the smash product X ∧ Y ∈ Ŝ∗,
defined in the usual way as the quotient (X × Y)/(X ∨ Y) in Ŝ∗. One can show that (smash)
products are compatible with �-completion in Ĥ (respectively Ĥ∗).

Morel has shown that the categories Ŝ and Ŝ∗ have natural simplicial structures, see [27].
In particular, for a pointed profinite space Y , there are profinite mapping spaces hom∗(W,Y )

for every pointed simplicial finite set W . The simplicial profinite set hom∗(W,Y ) is defined in
degree n by the set HomŜ(W ∧ Δ[n]+, Y ), whose profinite structure is inherited from Y by
considering it as the limit over the integers s and the elements R of R(Y ) of the finite sets
HomŜ(sksW ∧Δ[n]+, Y/R). Here, sksW denotes the s-skeleton of W . As an application, let S1

be the simplicial finite set Δ[1]/∂Δ[1]. As usual we set Ω̂X := hom∗(S1,X). In particular, Ω̂X

is fibrant if X is fibrant. This adjunction may be extended to the homotopy category Ĥ∗. For every
profinite space X and every profinite space Y , there is a natural bijection HomĤ∗(S

1 ∧ X,Y) ∼=
HomĤ∗(X, Ω̂Y )). Since S1 ∧ X is a cogroup object and Ω̂X a group object in Ĥ∗, we conclude

that the previous bijection of maps in Ĥ∗ is in fact an isomorphism of groups, cf. [8].
There are several possibilities to define the homotopy groups of a pointed profinite space.

One could define πkX to be the homotopy group πk|X̂�| of the underlying simplicial set of the
fibrant replacement in Ŝ∗ of X. Dehon suggests the following approach in [8, Section 1.3]. If
X is a pointed fibrant profinite space, we define π0X to be the coequalizer in Ê of the diagram
d0, d1 : X1 ⇒ X0; and πkX for k � 1 is defined to be the group π0Ω̂

kX. One can easily see
that πkX has a natural structure of a pro-�-group for every k � 1. Both definitions agree since
πk(Ω̂X) = πk+1X.

We conclude this discussion with a collection of results on the homotopy groups of the �-
completion X̂� ∈ Ŝ of a simplicial set X, which can be deduced from the methods of [5, VI, §5].

Proposition 3. Let X be a pointed connected simplicial set.

(1) We have an isomorphism

π1
(
X̂�

) ∼= ˆπ1(X)
�
.
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In particular, if π1X is a finitely generated abelian group, there is an isomorphism π1(X̂
�) ∼=

Z� ⊗Z π1X, where Z� denotes the �-adic integers.
(2) If X is in addition simply connected, and its higher homotopy groups are finitely generated,

then we have for all n � 2

πnX̂
� ∼= ˆπnX

� ∼= Z� ⊗Z πnX.

2.1.1. The model structure on Ŝ is fibrantly generated
The main technical result of this subsection is that the model structure on Ŝ , hence also on Ŝ∗,

is fibrantly generated. We recall some notations and constructions from [27]. Let n � 0 be a
non-negative integer and S be a profinite set. The functor Ŝop → E , X �→ HomÊ (Xn,S) is rep-
resentable by a simplicial profinite set, which is denoted by L(S,n). It is given by the formula

L(S,n) :Δop → Ê, [k] �→ SHomΔ([n],[k]).

If M is a profinite abelian group, then L(M,n) has a natural structure of a simplicial profi-
nite abelian group and the abelian group HomŜ(X,L(M,n)) can be identified with the group
Cn(X;M) of continuous n-cochains with values in M . Furthermore, for every k, L(M,∗)([k])
may be considered in the usual way as an abelian cochain complex.

For a profinite abelian group M , let Zn(X;M) denote the abelian group of n-cocycles of the
complex C∗(X;M). The functor Ŝop → E , X �→ Zn(X;M) is also representable by a simplicial
profinite abelian group, which is denoted by K(M,n), called the profinite Eilenberg–Mac Lane
space of type (M,n). The homomorphism Cn(X;M) → Zn+1(X;M) given by the differential
defines a natural map of simplicial profinite abelian groups L(M,n) → K(M,n + 1). Consider
the two sets of morphisms of Lemme 2 in [27]:

P := {
L(M,n) → K(M,n + 1), K(M,n) → ∗ | M is an abelian pro-�-group, n � 0

}

and

Q := {
L(M,n) → ∗ | M is an abelian pro-�-group, n � 0

}
.

Theorem 4. The simplicial model structure on Ŝ , in which the weak equivalences are the Z/�-
cohomological isomorphisms and the cofibrations are the dimensionwise monomorphisms, is left
proper and fibrantly generated with P as the set of generating fibrations and Q as the set of
generating trivial fibrations.

Proof. The left properness is due to the fact that all objects in Ŝ are cofibrant, see for example
[15, Corollary 13.1.3]. The assertion of the theorem now follows from the methods of the proofs
of Lemme 2 and Proposition 3 in [27]. One can check for example the list of dual criteria for a
cofibrantly generated model structure of Kan’s Theorem 11.3.1 in [15], where we only need the
existence of small limits since we use cosmallness. One can find a detailed proof in [31]. �
2.2. Profinite spectra

2.2.1. The stable model structure
The well-known stabilization of the category of simplicial spectra of [4] uses the fact that S

is proper in an essential way in order to construct functorial factorizations. Since the category
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Ŝ is only left but not right proper, we have to find a different method. Hovey [16] has pointed
out a general way to stabilize a left proper cellular model category with respect to a left Quillen
endofunctor T .

We have to start with a result on the localization of model categories. We recall the definition
of local objects and local equivalences of [15].

Definition 5. Let C be a simplicial model category. Let K be a set of objects in C.

(1) A map f :A → B is called a K-local equivalence if for every element X of K the induced
map of simplicial mapping spaces f ∗ : Map(B,X) → Map(A,X) is a weak equivalence of
simplicial sets.

(2) Let K denote the class of K-local equivalences. An object X is called K-local if it is K-
local, i.e. if X is fibrant and for every K-local equivalence f :A → B the induced map
f ∗ : Map(B,X) → Map(A,X) is a weak equivalence.

Theorem 6. Let C be a left proper fibrantly generated simplicial model category with all small
limits. Let K be a set of fibrant objects in C and let K be the class of K-local equivalences.

(1) The left Bousfield localization of C with respect to K exists, i.e. there is a model category
structure LK C on the underlying category C in which:
(a) the class of weak equivalences of LK C equals the class of K-local equivalences of C,
(b) the class of cofibrations of LK C equals the class of cofibrations of C,
(c) the class of fibrations of LK C is the class of maps with the right lifting property with

respect to those maps that are both cofibrations and K-local equivalences.
(2) The fibrant objects of LK C are the K-local objects of C.
(3) LK C is left proper. It is fibrantly generated if every object of C is cofibrant.
(4) The simplicial structure of C gives LK C the structure of a simplicial model category.

Proof. The proof is a dual version of the proof of Theorem 5.1.1 of [15]. But since we do not
assume C to be cellular, we have to use a dual version of Lemma 2.5 of [6], in order to avoid the
use of Proposition 5.2.3 of [15]. One may look at [31] for more details. �

We return to spectra. Let C be a left proper fibrantly generated simplicial model category
with all small limits and finite colimits. Let T :C → C be a left Quillen endofunctor on C. Let
U :C → C be its right adjoint.

Definition 7. A spectrum X is a sequence (Xn)n�0 of objects of C together with structure maps
σ :T Xn → Xn+1 for all n � 0. A map of spectra f :X → Y is a collection of maps fn :Xn → Yn

commuting with the structure maps. We denote the category of spectra by Sp(C, T ).

We begin by defining an intermediate strict structure, see [4] or [16]. As usual we have the
following functors.

Definition 8. Given n � 0, the evaluation functor Evn : Sp(C, T ) → C takes X to Xn. It has a left
adjoint Fn :C → Sp(C, T ) defined by (FnA)m = T m−nA if m � n and (FnA)m = ∗ otherwise.
The structure maps are the obvious ones.
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The evaluation functor also has a right adjoint Rn :C → Sp(C, T ) defined by (RnA)i = Un−iA

if i � n and (RnA)i = ∗ otherwise. The structure map T Un−iA → Un−iA is adjoint to the
identity map of Un−i when i < n.

Definition 9. A map f in Sp(C, T ) is a projective weak equivalence (respectively projective
fibration) if each map fn is a weak equivalence (respectively fibration). A map i is a projective
cofibration if it has the left lifting property with respect to all projective trivial fibrations.

The following proposition is proved in the standard way [16, Proposition 1.14].

Proposition 10. A map i :A → B in Sp(C, T ) is a projective (trivial ) cofibration if and only if
i0 :A0 → B0 and the induced maps jn :An �T An−1 T Bn−1 for n � 1 are (trivial ) cofibrations
in C.

We will show that the projective structure is in fact a fibrantly generated model structure. We
denote the set of generating fibrations of C by P and the set of generating trivial fibrations by Q.
Inspired by Proposition 10, we set

P̃ := {gn :RnR → RnS ×Rn−1US Rn−1UR, for all f :R → S in P, n � 0}
and

Q̃ := {gn :RnR → RnS ×Rn−1US Rn−1UR, for all f :R → S in Q, n � 0}
where gn is the map induced by the commutative diagram

RnR RnS

Rn−1UR Rn−1US.

(1)

Lemma 11. If f :X → Y is a fibration (respectively trivial fibration) in C, then the maps
gn :RnX → RnY ×Rn−1UY Rn−1UX are fibrations (respectively trivial fibrations) in Sp(C, T ).

Proof. Since Rn is defined via the right Quillen functor U which preserves fibrations and trivial
fibrations, it is clear that the map (Rnf )i = Un−i (f ) on the ith level is a fibration (respec-
tively trivial fibration). In diagram (1), the maps on the ith level are either identities or equal to
Un−i (f ). Hence the induced map gn is also a fibration (respectively trivial fibration). �
Theorem 12. Let C be a left proper fibrantly generated simplicial model category with all small
limits. The projective weak equivalences, projective fibrations and projective cofibrations define
a left proper fibrantly generated simplicial model structure on Sp(C, T ) with set of generating
fibrations P̃ and set of generating trivial fibrations Q̃.

Proof. This intermediate result can be proven in essentially the same way as Theorem 1.14
in [16]. The hard point is the factorization axiom which follows from a cosmall object argument
and the fact that C is fibrantly generated. Since we use a cosmall instead of small object argument
the existence of small limits suffices. �
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It remains to modify this structure in order to get a stable structure, i.e. one in which the
prolongation of T is a Quillen equivalence. We will do this by applying the localization theorem,
Theorem 6, to the projective model structure on spectra. We want the stable weak equivalences
to be the maps that induce isomorphisms on all generalized cohomology theories. A generalized
cohomology theory is represented by the analogue of an Ω-spectrum.

Definition 13. A spectrum E ∈ Sp(C, T ) is defined to be a U -spectrum if each En is fibrant and
the adjoint structure maps En → UEn+1 are weak equivalences for all n � 0.

By Corollary 9.7.5 in [15], since each En is fibrant and since the right Quillen functor U

preserves fibrations, we know that En → UEn+1 is a weak equivalence in C if and only if the
induced map Map(A,En) → Map(A,UEn+1) of mapping spaces is a weak equivalence in S for
every cofibrant object A. By adjunction this is equivalent to Map(FnA,E) → Map(Fn+1T A,E)

being a weak equivalence in S for every cofibrant object A. So we have to define the set K to
consist of all U -spectra such that the maps Fn+1T A → FnA adjoint to the identity map of T A are
the K-local equivalences. By the fact that the projective model structure on Sp(C, T ) is fibrantly
generated, left proper and simplicial, we may deduce the following result from Theorem 6.

Theorem 14. Let C be a left proper fibrantly generated simplicial model category with all small
limits. Let K be the set of U -spectra. There is a stable model structure on Sp(C, T ) which is
defined to be the K-localized model structure LK Sp(C, T ) of Theorem 6 where K is the class of
all K-local equivalences.

We apply this to the category C = Ŝ∗ and T = S1 ∧ ·. By Theorem 4 its model structure is
simplicial, left proper and fibrantly generated. Note that S1 ∧ · is a left Quillen endofunctor since
it takes monomorphisms to monomorphisms and preserves cohomological equivalences by the
suspension axiom. Its right adjoint is Ω̂ .

Definition 15. A profinite spectrum X consists of a sequence Xn ∈ Ŝ∗ of pointed profinite spaces
for n � 0 and maps σn :S1 ∧ Xn → Xn+1 in Ŝ∗.

A morphism f :X → Y of spectra consists of maps fn :Xn → Yn in Ŝ∗ for n � 0 such that
σn(1 ∧ fn) = fn+1σn.

We denote by Sp(Ŝ∗) the corresponding category and call it the category of profinite spectra.

Corollary 16. There is a stable model structure on Sp(Ŝ∗) for which the prolongation S1 ∧
· : Sp(Ŝ∗) → Sp(Ŝ∗) is a Quillen equivalence.

In particular, the stable equivalences are the maps that induce an isomorphism on all gen-
eralized cohomology theories, represented by profinite Ω̂-spectra; the stable cofibrations are
the maps i :A → B such that i0 and the induced maps jn :An �S1∧An−1

S1 ∧ Bn−1 → Bn are
monomorphisms for all n; the stable fibrations are the maps with the right lifting property with
respect to all maps that are both stable equivalences and stable cofibrations.

Remark 17. There is also a stable model structure on symmetric profinite spectra in the sense
of [17], see [31].
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2.2.2. Profinite completion of spectra
Let Sp(S∗) be the stable model structure of simplicial spectra defined in [4]. Let ˆ(·) : Sp(S∗) →

Sp(Ŝ∗) be the profinite completion applied levelwise that takes the spectrum X to the profinite
spectrum X̂ whose structure maps are given by

S1 ∧ X̂n
∼= ˆS1 ∧ Xn

σ̂−→ X̂n+1.

Let | · | : Sp(Ŝ∗) → Sp(S∗) be the levelwise applied forgetful functor. Since the two functors ˆ(·)
and | · | on Ŝ∗ commute with smash products, they form an adjoint pair of functors. The following
result may be easily deduced from [27, §2, Proposition 1].

Proposition 18. The functor ˆ(·) : Sp(S∗) → Sp(Ŝ∗) preserves stable equivalences and cofibra-
tions.

The functor | · | : Sp(Ŝ∗) → Sp(S∗) preserves fibrations and stable equivalences between fi-
brant objects.

In particular, ˆ(·) induces a functor on the homotopy categories and the pair ( ˆ(·), | · |) is a
Quillen pair of adjoint functors.

Similar versions of the following facts have also been proved by Dehon [8]. We deduce the
following result from Proposition 3.

Proposition 19. Let E be a (−1)-connected spectrum and suppose that the Z/�-cohomology of
each En, n � 1, is finite-dimensional in each degree. Then the stable homotopy groups of the
profinite completion Ê are given by the following isomorphism for all n:

πnÊ ∼= ˆπnE
� ∼= Z� ⊗Z πnE.

Example 20. 1. Let MU be the simplicial spectrum representing complex cobordism and let
MU/�ν be the cofibre spectrum defined by multiplication with �ν . For the profinite completions
there are isomorphisms

π2∗M̂U ∼= Z� ⊗Z π2∗MU and π2∗M̂U/�ν ∼= Z/�ν ⊗ π2∗MU,

where π2∗MU is a polynomial ring in infinitely many variables, cf. [1].
2. Let K̂U be the profinite completion of the Ω-spectrum representing complex K-theory:

K̂U2i = ˆBU × Z and K̂U2i+1 = Û for all i � 0. Although KU does not satisfy the hypothesis of
the proposition, we get by Proposition 3 π2i (K̂U) ∼= Z� and π2i+1(K̂U) = 0 for all i.

2.2.3. Generalized cohomology theories on profinite spaces
It is the main feature of the stable homotopy category of profinite spectra that it provides a

general setting for cohomology theories on profinite spaces. We define generalized cohomology
theories on Ŝ to be the functors represented by profinite spectra. Profinitely completed cohomol-
ogy theories have already been studied by Dehon in [8].

Let E,X be spectra in Sp(Ŝ∗), we set En(X) := Hom ˆSH(X,E[n]), where Hom ˆSH(X,E[n])
denotes the set of maps that lower the dimension by n, and call this the nth cohomology group
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of X with values in E. We set E∗(X) := ⊕
n En(X). For a pointed profinite space X we define

its nth cohomology groups with values in E by

En(X) := Hom ˆSH
(
Σ∞(X),E[n]). (2)

For a pair (X,A) of profinite spaces we define the relative cohomology by En(X,A) :=
En(X/A).

2.2.4. The Atiyah–Hirzebruch spectral sequence
Let X be a profinite space. For every integer p, we denote by skpX the profinite subspace of

X which is generated by the simplices of degree less or equal p. We call skpX the p-skeleton
of X. For every k the set of k-simplices of skpX is closed in Xk such that skpX is a simplicial
profinite subset of X, cf. [8]. Let E be a profinite spectrum. We consider the skeletal filtration
sk0X ⊂ · · · ⊂ skpX ⊂ skp+1X ⊂ · · · ⊂ X. It yields a filtration on E∗X defined by FpE∗X :=
Ker(E∗X → E∗skp−1X).

Since the coefficient groups Eq have a natural profinite structure, we may consider continuous
cohomology with coefficients in Eq . The proof of the following theorem is essentially the one
given by Adams in [1]. Dehon has translated it to the profinite setting in [8, Proposition 2.1.9].
Although Dehon proves the following assertion only for special cohomology theories, the proof
works in the category of profinite spectra for any profinite cohomology theory, see [31].

Proposition 21. For any profinite spectrum E and for any profinite space X there is a spectral se-
quence {Ep,q

r } with E
p,q

2
∼= Hp(X;Eq) ⇒ Ep+q(X). The spectral sequence converges strongly,

in the sense of [1, III, §8.2], to the graded term E
p,q∞ = FpE∗X/Fp+1E∗X of the filtration on

E∗X if lim1
r E

p,q
r = 0. In particular, the spectral sequence converges if Hp(X;Eq) = 0 for p

sufficiently large or if Hp(X;Eq) is finite for all p. We call it the profinite Atiyah–Hirzebruch
spectral sequence.

2.2.5. Comparison with generalized cohomology theories of pro-spectra
As a corollary, we compare the cohomology of profinite spectra with cohomology theories of

pro-spectra. Isaksen constructs in [19] a stable model structure on the category of pro-spectra. If
E is a pro-spectrum then the r th cohomology Er

pro(X) of a pro-spectrum X with coefficients in
E is the set [X,E]−r

pro of maps that lower the degree by r in the stable homotopy category of pro-
spectra. In addition, for two pro-spectra X and E he shows the existence of an Atiyah–Hirzebruch
spectral sequence E

p,q

2 = H−p(X;π−qE) ⇒ [X,E]p+q
pro which is in particular convergent if E is

a constant pro-spectrum and X is the suspension spectrum of a finite-dimensional pro-space. Tak-
ing completion and homotopy limits defines a functor ˆ(·) : pro-Sp(S∗) → Sp(Ŝ∗). One can check
that it also induces maps E∗

pro(X) → Ê∗(X̂), which yield morphisms of Atiyah–Hirzebruch spec-
tral sequences. Since the E2-terms agree, we get

Corollary 22. Let {Xs}s∈I be a finite-dimensional pro-space. Then there is an isomorphism

MU∗
pro

({Xs};Z/�ν
) ∼= M̂U

∗(
X̂;Z/�ν

)
.
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3. Stable étale realization on the A1A1A1-homotopy category

The construction of the étale topological type functor Et from locally Noetherian schemes
to pro-spaces is due to Artin–Mazur and Friedlander. The construction of the A1-homotopy
category of schemes gave rise to the question if this functor may be enlarged to the category
of spaces. This has been answered independently by Isaksen and Schmidt. The latter one con-
structed in [32] a geometric functor to the category of pro-objects in H. Isaksen gave a rigid, but
less intuitive construction in [18]. We follow Isaksen’s approach. The first step in this direction
was the construction of a model structure on pro-S .

3.0.1. The functor Êt
Let pro-S be the category whose objects are cofiltered diagrams X(−) : I → S and its mor-

phisms are defined by

Hompro-S
(
X(−), Y (−)

) := lim
t∈J

colim
s∈I

HomS
(
X(s),Y (t)

)
.

The cohomology with Z/�-coefficients is defined to be

H ∗(X(−),Z/�
) := colim

s
H ∗(X(s),Z/�

)
.

Isaksen has constructed several model structures on pro-S ; in particular, the Z/�-cohomological
model structure of [20] in which the weak equivalences are morphisms inducing isomorphisms
in Z/�-cohomology and the cofibrations are levelwise monomorphisms.

We define a completion functor ˆ(·) : pro-S → Ŝ as the composite of two functors. First we
apply ˆ(·) :S → Ŝ levelwise, then we take the limit in Ŝ of the underlying diagram. The next
lemma shows that the functor ˆ(·) respects the model structures on pro-S and Ŝ . Its proof is clear
using Lemme 1.1.1 of [8]. Using the functor Ŝ G−→ pro-sF i−→ pro-S of Isaksen’s it follows as in
[20] from this lemma that the homotopy categories Ho(pro-S) and Ĥ are in fact equivalent via
completion.

Lemma 23.

(1) Let X ∈ pro-S be a pro-simplicial set. Then we have a natural isomorphism of cohomology
groups

H ∗(X;Z/�)
∼=−→ H ∗(X̂;Z/�).

(2) A morphism f :X → Y of pro-simplicial sets induces an isomorphism in Z/�-cohomology
if and only if the morphism f̂ : X̂ → Ŷ in Ŝ induces an isomorphism in continuous Z/�-
cohomology.

(3) The functor ˆ(·) : pro-S → Ŝ preserves monomorphisms.

Now we turn to the applications in algebraic geometry. We refer the reader to [14,18] for a
detailed discussion of the category of rigid hypercoverings and rigid pullbacks. The following
definition is taken from [18].
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Definition 24. Let X be a locally Noetherian scheme. The étale topological type of X is defined
to be the pro-simplicial set

EtX := Re◦π : HRR(X) → S

sending a rigid hypercovering U· of X to the simplicial set of connected components of U·. If
f :X → Y is a map of locally Noetherian schemes, then the strict map Etf : EtX → EtY is given
by the functor f ∗ : HRR(Y ) → HRR(X) and the natural transformation EtX ◦ Etf → EtY .

Isaksen uses the insight of Dugger [9] that one can construct the unstable A1-homotopy cat-
egory in a universal way. Starting from an almost arbitrary category C, Dugger constructs an
enlargement of C that carries a model structure and is universal for this property. Isaksen extends
in [18] the functor Et via this general method to the A1-homotopy category. The idea is that EtX
should be the above EtX on a representable presheaf X and should preserve colimits and the
simplicial structure. For our purpose, we would like to define Êt directly in the way Dugger sug-
gests. But the problem is that ˆ(·) : pro-S → Ŝ is not a left adjoint functor and does not preserve
all small colimits. Therefore, we define Êt to be the composition of Et followed by completion.

Let Sm/k be the category of smooth quasi-projective schemes of finite type over k and
Δop PreShv(Sm/k) the category of simplicial presheaves on Sm/k. We make the following
definition whose first part is due to Isaksen [18].

Definition 25. If X is a representable presheaf, then EtX is the étale topological type of X. If P

is a discrete presheaf, i.e. P is just a presheaf of sets, then P can be written as a colimit colimi Xi

of representables and we define EtP := colimi EtXi . Finally, an arbitrary simplicial presheaf can
be written as the coequalizer of the diagram

∐
[m]→[n]

Pm ⊗ Δn ⇒
∐
[n]

Pn ⊗ Δn,

where each Pn is discrete. Define EtP to be the coequalizer of the diagram

∐
[m]→[n]

EtPm ⊗ Δn ⇒
∐
[n]

EtPn ⊗ Δn.

We define the profinite étale topological type functor Êt to be the composition of Et and the
profinite completion functor pro-S → Ŝ :

Êt := ˆ(·) ◦ Et : Δop PreShv(Sm/k) → Ŝ.

For computations the following remark is crucial.

Remark 26. Let M be a locally constant sheaf on the locally Noetherian scheme X. By [14,
Proposition 5.9], we know that there is an isomorphism for étale cohomology H ∗

ét(X;M) ∼=
H ∗(EtX,M) where H ∗(EtX;M) denotes the cohomology of a pro-simplicial set EtX with
coefficients in the local coefficient system M corresponding to the sheaf M . For a finite abelian



G. Quick / Advances in Mathematics 214 (2007) 730–760 743
group π , we have in addition a natural isomorphism by Lemma 23: H ∗(Z;π) ∼= H ∗(Ẑ;π) for
every pro-simplicial set Z. Hence we get as well

H ∗
ét(X;π) ∼= H ∗(ÊtX,π)

for every locally Noetherian scheme X and every finite abelian group π .
Furthermore, the pro-fundamental group π1(EtX) is isomorphic as a profinite group to the

étale fundamental group π ét
1 (X) of X. Hence π1(ÊtX) is equal to π ét

1 (X)∧� by Proposition 3.

Examples. 1. Let R be a strict local Henselian ring, i.e. a local Henselian ring with separably
closed residue field. Then SpecR has no nontrivial étale covers and the étale topological type of
SpecR is a contractible space.

2. Let k be a separably closed field with char(k) �= �. The space Gm is connected and its �-
completed étale fundamental group is Z�, the �-adic integers. This implies Êt Gm

∼= K(Z�,1) in
Ŝ , where K(Z�,1) is naturally a profinite space since Z� is a profinite group.

3. Let k be a separably closed field with char(k) �= �. Let P1
k be the projective line over k. Since

P1
k is connected and its étale fundamental group π ét

1 (P1
k) = 0 is trivial, see e.g. [26, I, Exam-

ple 5.2 f)], Êt P1
k is a simply connected space. Apart from H 0 its only nonzero étale cohomology

group is H 2
ét(P

1
k,Z/�) ∼= Z/�, with a chosen isomorphism Z/� → Z/�(1). Hence Êt P1

k is iso-

morphic in Ŝ to the simplicial finite set S2.
4. Let k = Fq be a finite field with char(k) = p �= �. The étale topological type of k is isomor-

phic to S1 in Ĥ. For, it is connected and its �-completed fundamental group is the �-completion
of the absolute Galois group of k, i.e. π�

1,ét(k) = Z�. Since the cohomology groups Hi(k;Z/�)

vanish for i > 1, Êt k is a space of dimension one and weakly equivalent to S1.

3.1. Profinite étale realization of motivic spaces

We consider as in [9] the category U(Sm/k) := Δop PreShv(Sm/k) of simplicial presheaves
on Sm/k with the projective model structure: the weak equivalences (fibrations) are objectwise
weak equivalences (fibrations) of simplicial sets, the cofibrations are the maps having the left
lifting property with respect to all trivial fibrations. Then one takes the left Bousfield localization
of this model structure at the set S of maps:

(1) for every finite collection {Xa} of schemes with disjoint union X, the map
∐

Xa → X from
the coproduct of the presheaves represented by Xa to the presheaf represented by X;

(2) every Nisnevich (étale) hypercover U· → X;
(3) X × A1 → X for every scheme X.

We call this the Nisnevich (étale) A1-local projective model structure according to [18], and
denote it by LU(k) (respectively LétU(k)).

Proposition 8.1 of [9] states that LU(k) is Quillen equivalent to the Nisnevich A1-localized
model category MVk of [29] and the analogue holds for the étale case. For an étale realization
over a field of positive characteristic, we have to consider the following point. Since the étale
fundamental group of the affine line A1

k over a field k of positive characteristic is non-trivial, one
has to complete away from the characteristic of k in this case, using the fact that the projection
X × A1 → X induces an isomorphism in étale cohomology H ∗(X;Z/�) → H ∗(X × A1;Z/�)
ét ét
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for every prime � �= p. This means that we have to consider the Z/�-cohomological model struc-
ture on pro-S , respectively Ŝ . The following theorem is due to Isaksen [18].

Theorem 27. Let � be a prime different from the characteristic of k. With respect to the Nisnevich
(étale) A1-local projective model structure on simplicial presheaves on Sm/k, the functor Êt in-
duces a functor LÊt from the Nisnevich (étale) A1-homotopy category to the Z/�-cohomological
homotopy category of Ŝ . In particular, LÊtX is just ÊtX for every scheme in Sm/k, and hence
Êt preserves A1-weak equivalences between smooth schemes over k.

Proof. Since every Nisnevich hypercover is also an étale hypercover it suffices to check this for
the étale case. The first part of the proof is the one of [18, Theorem 6].

By Lemma 23 completion preserves weak equivalences and cofibrations. Hence the composi-
tion Êt sends weak equivalences between cofibrant objects into weak equivalences and the total
left derived functor LÊt :Hét

A1(k) → Ĥ from the étale A1-homotopy category Hét
A1(k) of schemes

over k of [29] exists. �
3.2. Étale realization of motivic spectra

We extend the results of the previous section to the stable A1-homotopy category. This étale
realization of the stable motivic category is the technical key point for the construction of a trans-
formation from algebraic cobordism given by the MGL-spectrum to the profinite étale cobordism
of the next section. One of the reasons why we consider the model Ŝ of Ho(Ŝ), instead of pro-S ,
is that it seems to be easier to extend the functor Êt to the category of profinite spectra rather than
pro-spectra. I am especially grateful to Fabien Morel for helpful discussions on the problems in
this section.

Let k be the base field of characteristic different from � and let k be its separable closure.
For the category SpP

1
(k) of motivic P1

k-spectra over k, in the sense of [28] for example, we
have to consider presheaves X pointed by a morphism Speck → X . This forces us to consider
also the category Ŝ∗/Êt k of pointed profinite spaces over Êtk. Its objects (X,p, s) are pointed
profinite spaces X together with a projection morphism p :X → Êtk and a section morphism
s : Êt k → X. The morphisms in this category are commutative diagrams in the obvious sense.
The étale realization of a pointed presheaf X is naturally an object of Ŝ∗/Êt k via the images of
the projection and section morphisms of X . For the contractible space Êt k, we choose and fix
a base point. Since all étale covers of Speck are trivial, any choice is ok. The point is that this
allows us to consider every ÊtX as a pointed space compatible with base extensions of k in the
following way. The space ÊtX is pointed by the composite ∗ → Êt k → Êt k → X . Furthermore,
via the canonical maps X → ∗ → Êt k → Êtk and Êt k → ∗ → X we may view every space X

in Ŝ∗ as an object in Ŝ∗/Êt k. In particular, the 2-sphere S2 is naturally an object in Ŝ∗/Êt k.
We consider the usual model structure on Ŝ∗/Êt k where weak equivalences (respectively cofi-
brations, fibrations) are those maps which are Z/�-weak equivalences (respectively cofibrations,
fibrations) in Ŝ after forgetting the projection and section maps. This model structure on Ŝ∗/Êt k
is left proper and fibrantly generated and we construct a stable model structure on the category
Sp(Ŝ∗/Êt k,S2 ∧·) of profinite S2-spectra over Êtk exactly in the same way as for Sp(Ŝ∗, S2 ∧·).
Its homotopy category will be denoted by ˆSH2/Êt k.

3.2.1. An intermediate category
The problem for the stable motivic version is that Et and hence also Êt do not commute with

products in general. We have to construct an intermediate category and show by a zig-zag of
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functors that we get a functor on the homotopy level. However, the projections to each factor
induce a canonical map

Êt
(
P1

k ∧k X
) → Êt

(
P1

k

) ∧Êt k Êt(X).

Lemma 28. For every pointed presheaf X on Sm/k, the sequence of canonical maps in Ŝ∗/Êt k

S2 ∧ ÊtX �−→ Êt
(
P1

k

) ∧Êt k Êt(X ) �←− Êt
(
P1

k ∧k X
)

is a sequence of Z/�-weak equivalences.

Proof. For X ∈ Sm/k, the assertion may easily be deduced from the projective bundle formula
for étale cohomology and the isomorphism Êt P1

k
∼= S2 in Ŝ∗.

If X denotes a presheaf on Sm/k, X is isomorphic to the colimit of representable presheaves
X = colims Xs . Since each Xs is a smooth scheme over k, the étale cohomology groups
Hi(EtXs;Z/�) = Hi

ét(Xs;Z/�) are finite Z/�-vector spaces in each degree. Hence, since Et

commutes with colimits, we get H ∗(EtX ;Z/�) ∼= lims H ∗(EtXs;Z/�), as the lim1 of these fi-
nite groups vanishes, and the limit over all s of H ∗(EtXs;Z/�) commutes with the functor
H ∗(Et P1

k;Z/�) ⊗H ∗(Et k;Z/�) −. �
Hence if σn: P1

k ∧k En → En+1 is the structure map of a motivic P1
k-spectrum, then Êt yields

a sequence of maps

S2 ∧ ÊtEn
�−→ Êt

(
P1

k

) ∧Êtk Êt(En)
�←− Êt

(
P1

k ∧k En

) Êtσn−−−→ En+1 (3)

where the first two maps are weak equivalences in Ŝ∗/Êt k. Since there is no natural inverse map
Êt(P1

k) ∧Êt k Êt(X ) → Êt(P1
k ∧k X ) in Ŝ∗/Êt k, we may only construct an étale realization on

the level of homotopy categories. Therefore, we consider an intermediate category C and deduce
from a zig-zag of functors

SpP1
(k)

˜̂Et−→ C/Êt k
i←↩ Sp

(
Ŝ/Êt k,S2 ∧ ·)

the existence of a stable realization functor SH(k) → ˆSH2/Êt k.
In view of Lemma 28, it is natural to consider the following definition. The objects of the

category C/Êt k are sequences

{
Fn,F

′
n,F

′′
n ;S2 ∧ Fn

�pn−−→ F ′
n

�qn←−− F ′′
n

rn−→ Fn+1
}
n∈N

where Fn, F ′
n, F ′′

n are pointed profinite spaces over Êt k and pn, qn and rn are maps in Ŝ∗/Êt k;
furthermore the maps pn and qn are weak equivalences in Ŝ∗.

The morphisms of C/Êt k are levelwise morphisms of Ŝ∗/Êt k which make the obvious dia-
grams commutative, where the map S2 ∧ En → S2 ∧ Fn is the map induced by En → Fn. The

functor Sp(Ŝ∗/Êt k,S2 ∧ ·) i
↪→ C/Êt k denotes the full embedding which sends {Fn,S

2 ∧ Fn
σn−→

Fn+1} to {Fn,S
2 ∧ Fn,S

2 ∧ Fn;S2 ∧ Fn
id−→ S2 ∧ Fn

id←− S2 ∧ Fn
σn→ Fn+1}.

On the other hand, we get a functor SpP
1
(k)

˜̂Et−→ C/Êt k, when we apply Êt levelwise.



746 G. Quick / Advances in Mathematics 214 (2007) 730–760
We define a class W of maps in C/Êt k as the image of the stable equivalences of
Sp(Ŝ∗/Êt k,S2 ∧ ·) under the embedding i. Since the maps in W are the images of weak equiv-
alences in a model structure and since i is a full embedding, it follows that W admits a calculus
of fractions and we may form the localized category Ho(C/Êt k) := C[W−1]. We call the maps
in W weak equivalences or stable equivalences, by abuse of notation. We will call a map in W a
level equivalence if it is in the image of the level equivalences of Sp(Ŝ∗/Êt k,S2 ∧ ·) under i.

Proposition 29. The induced embedding i : ˆSH2/Êt k → Ho(C/Êt k) is an equivalence of cate-
gories.

The corresponding inverse equivalence is denoted by j : Ho(C/Êt k) → ˆSH2/Êt k. Because of
the necessary choices in the proof, one should note that j is not quite constructible in practice.

Proof. Since i is a full embedding, it suffices to show that for every F ∈ Ho(C/Êt k) there is a
spectrum E ∈ ˆSH2/Êt k such that i(E) ∼= F in Ho(C/Êt k). The crucial point is to construct the
structure map of a spectrum from the given data of F .

Let R be a fixed fibrant replacement functor in Ŝ∗/Êt k. We consider the category Sp(Ŝ∗/Êt k,

RS2 ∧·) as a Quillen equivalent model for ˆSH2/Êt k. Since R commutes with products, applying
R on each level yields the following sequence:

RS2 ∧ RFn
�Rpn−−−→ RF ′

n
�Rqn←−−− RF ′′

n
Rrn−−→ RFn+1.

In addition, the functor R can be chosen such that the map Rqn is a trivial fibration between
fibrant and cofibrant objects, see Proposition 8.1.23 of [15]. The sequence we get is still isomor-
phic in Ho(C/Êt k) to the initial one since they are even level equivalent. By Proposition 9.6.4
of [15], there is a right inverse sn of Rqn in Ŝ∗/Êt k such that Rqnsn = idRF ′

n
and a homotopy

snRqn ∼ idRF ′′
n

. We denote by E the resulting spectrum with structure maps σn := Rrn◦sn ◦Rpn.

Now it is easy to check that i(E) is isomorphic to F in Ho(C/Êt k). �
3.2.2. The main result

We want to show that ˜̂EtSp : SpP1
(k) → C/Êt k has a total left derived functor. Therefore,

we have to choose a good model for the stable motivic category SH(k). By [9] we know that
LU(k) is a left proper cellular simplicial model category. Hence, in order to be able to apply
the methods of [16], we only need an appropriate left Quillen endofunctor. Unfortunately, as the
referee pointed out, the map ∗ → P1 is not a projective cofibration in LU(k). One should note
that this problem does not appear when we use the injective model structure on presheaves, in
which every monomorphism is a cofibration, see Jardine’s work on motivic spectra [22]. But Et
is not a Quillen functor on the injective structure since there are too many injective cofibrations,
see [18, Remark 3].

Nevertheless, there are at least two possible approaches to solve this problem and we are
indebted to the referee for calling our attention to them. The probably more elegant solution is
to show that Et is a left Quillen functor on the flasque model structure on Δop PreShv(Sm/k)

constructed by Isaksen in [21], for which ∗ → P1 is a flasque cofibration. The easier and more
obvious way is to factor ∗ → P1 as ∗ → Q → P1, where ∗ → Q is a projective cofibration
and p :Q → P1 is a trivial fibration in LU(k). We follow the latter approach, which is in the
spirit of [10, Section 2.2], where the sphere A1/A1 − {0} is replaced by a projective cofibrant
motivic space. Up to weak equivalence the choice of the motivic sphere is irrelevant for the
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stable motivic homotopy category, see [16, Theorem 5.7]. Since ∗ → Q is a cofibration, the
functor Q ∧ · : LU(k) → LU(k) is a left Quillen functor and we are able to apply the methods
of [16, Sections 3 and 5]. Furthermore, via the map p : Q → P1, every P1-spectrum induces a
Q-spectrum.

Proposition 30. The canonical functors

SpP
1
(k) → Sp

(
MVk,P1 ∧ ·) → Sp

(
LU(k),Q ∧ ·)

are Quillen equivalences.

Proof. The first equivalence follows as in the proof of [16, Corollary 3.5], taking into account
that cofibrations are sent to cofibrations and that the fibrant objects agree in both model struc-
tures.

The second equivalence follows from [16, Theorem 5.7], taking into account that LU(k) is
Quillen equivalent to MVk and that all objects in MVk are cofibrant. The functor MVk →
LU(k) is just the full embedding of Nisnevich sheaves into presheaves, its inverse is sheafifica-
tion, see [9]. �

Since p is a trivial fibration between cofibrant objects, it is even a simplicial homotopy equiv-
alence. Hence Êtp : ÊtQ → Êt P1 is a weak equivalence in Ŝ∗. The base change · ∧Speck Speck

preserves homotopy equivalences. Hence, by the example above, ÊtQk is a simply connected
space whose cohomology is equal to the one of S2. We conclude that ÊtQk is even isomorphic

to the simplicial finite set S2 and to Êt P1
k

in Ŝ∗ and the sequence of maps in Lemma 28 yields a

sequence of Z/�-weak equivalences in Ŝ∗ for every simplicial presheaf X :

S2 ∧ ÊtX �−→ Êt(Q) ∧Êt k Êt(X ) �←− Êt(Q ∧k X ). (4)

Finally, we can prove that there is a stable étale realization functor on the A1-homotopy theory
of schemes over an arbitrary base field of characteristic different from �.

Theorem 31. The functor Êt induces an étale realization of the stable motivic homotopy category
of P1-spectra:

LÊt :SH(k) → ˆSH2/Êt k.

Proof. We use Sp(LU(k),Q ∧ ·) as a model for SH(k). The desired functor is defined to be

the composite LÊt :SH(k)
L ˜̂Et−−→ Ho(C/Êt k)

j−→ ˆSH2/Êt k. For the existence of L ˜̂Et it remains to
show that stable equivalences in Sp(LU(k),Q ∧ ·) are sent to isomorphisms in Ho(C/Êt k).

We know that ˜̂EtSp sends level equivalences between cofibrant objects in LU(k) to weak
equivalences in C/Êt k, since Êt sends weak equivalences between cofibrant objects to weak
equivalences in Ŝ∗/Êt k. Hence it induces a total left derived functor on the projective model
structure of Sp(LU(k),Q ∧ ·).

We use the notation Σ
Q
n : LU(k) → Sp(LU(k),Q ∧ ·) for the left adjoint to the nth evaluation

functor. It is given by (Σ
Q
n X )m = Qm−nX if m � n and (Σ

Q
n X )m = Speck otherwise, where
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Qm−nX denotes the smash product of X with m − n copies of Q. We denote by Fn : Ŝ∗/Êt k →
C/Êt k the composition of the corresponding functor Σ̂n : Ŝ∗/Êt k → Sp(Ŝ∗/Êt k,S2 ∧·) followed
by the embedding i.

In order to show that there exists a derived functor on the stable structure it suffices to show
that ÊtSp(ζ

X
n ) is a stable equivalence for maps ζXn :Σn+1Q ∧ X → ΣnX in Sp(LU(k),Q ∧ ·)

for all cofibrant presheaves X ∈ LU(k), since these are the maps at which we localize to get the
stable model structure, cf. [15,16].

We consider the commutative diagram in Ho(C/Êt k):

ζ ÊtX
n : Fn+1(S

2 ∧ ÊtX )

∼=

∼=
Fn(ÊtX )

Fn+1(ÊtQ ∧Êt k ÊtX ))

∼=

Fn(ÊtX )

Fn+1(Êt(Q ∧X ))

∼=

Fn(ÊtX )

∼=

ÊtSp ζXn : ÊtSp(Σ
Q
n+1(Q ∧X )) ÊtSp(Σ

Q
n X ).

The upper and middle vertical isomorphisms on the left-hand side are the obvious level equiv-
alences deduced from the canonical sequence of weak equivalences (4). The lower vertical
isomorphisms are given by the following lemma applied to X and Q ∧X , respectively.

Lemma 32. For every integer n � 0 and every simplicial presheaf X there is an isomorphism
Fn(ÊtX ) ∼= ÊtSp(Σ

Q
n X ) in Ho(C/Êt k).

Proof. We define an intermediate object En ∈ C/Êt k given in degree m � n by

En
m = (ÊtQ)m−n ∧Êtk ÊtX , (En)′m = (ÊtQ)m+1−n ∧Êt k ÊtX , (En)′′m = (En)′m

with the obvious structure maps induced by S2 → ÊtQ respectively the identity; in degree m < n

it is defined by En
m = (En)′m = (En)′′m = Êtk with identity maps and the map to the terminal

object Êtk of Ŝ∗/Êt k.
The object En is defined such that there are canonical maps

Fn(ÊtX )
α−→ En β←− ÊtSp

(
ΣQ

n X
)

induced in degree m � n by the canonical weak equivalences of (4)

(
S2)m−n ∧ ÊtX �−→ (ÊtQ)m−n ∧Êt k ÊtX �←− Êt

(
Qm−n ∧k X

)
.

It follows that the maps α and β are both level equivalences in C/Êt k. Hence α and β are iso-
morphisms in Ho(C/Êt k). Their composition is the isomorphism Fn(ÊtX ) ∼= ÊtSp(Σ

Q
n X ). �
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We deduce from the diagram that ζ ÊtX
n and ÊtSp ζXn differ only by an isomorphism in

Ho(C/Êt k) given by level equivalences. Since ζ ÊtX
n is a stable equivalence in C/Êt k by defi-

nition, the map ÊtSp ζXn is in fact an isomorphism in Ho(C/Êt k), which finishes the proof of the
theorem. �

Let MGL denote the motivic spectrum defined in [35] representing algebraic cobordism.

Proposition 33. Let k be a separably closed field. There is an isomorphism in ˆSH2

LÊt(MGL) ∼= M̂U.

Proof. Let Gk(n,N) be the Grassmannian over k and Gk(n) be the colimit over N . By the Thom
isomorphisms in étale and singular cohomology, it suffices to show that there is a weak equiva-
lence between Êt(Gk(n)) and ĜC(n), the profinite completion of the simplicial set corresponding
to the complex Grassmannian manifold.

If chark > 0, let R be the ring of Witt vectors of k, otherwise set R = k. By choosing a
common embedding of R and C into an algebraically closed field, Friedlander proved in [13,
3.2.2], that there is a natural sequence of Z/�-weak equivalences in pro-S∗

Sing
(
GC(n,N)

) → Et
(
GC(n,N)

) → Et
(
GR(n,N)

) ← Et
(
Gk(n,N)

)
.

We remark that weak equivalences in pro-H∗ in the sense of [13] correspond to Z/�-weak equiv-
alences in pro-S∗ in the sense of [20]. By taking colimits with respect to N we get a sequence of
Z/�-weak equivalences in pro-S∗

Sing
(
GC(n)

) → Et
(
GC(n)

) → Et
(
GR(n)

) ← Et
(
Gk(n)

)
.

Since Z/�-weak equivalences are preserved under completion, this shows that there is an iso-
morphism ĜC(n) ∼= Êt(Gk(n)) in Ĥ∗. �
3.2.3. Étale realization of S1-spectra

The étale realization of S1-spectra is essentially simpler. The structure maps σn :S1
k ∧k En →

En+1 induce by base extension canonical maps S1
k

∧ En → S1
k ∧k En

σn−→ En+1 in LU(k).

Together with the isomorphism ÊtS1
k

= S1 in Ŝ∗, we conclude that Êt defines a functor on S1-

spectra Êt : SpS1
(k) → Sp(Ŝ∗/Êt k).

Theorem 34. The functor ÊtSp : SpS1
(k) → Sp(Ŝ∗/Êt k) induces a functor LÊtSp :SHS1

(k) →
ˆSH/Êt k on the stable A1-homotopy category of S1-spectra.

4. Profinite étale cohomology theories

4.1. General theory

Let k be a fixed base field and let � be a fixed prime different from the characteristic of k.
The first main application of the previous discussion is a canonical setting for étale cohomology
theories for schemes, in particular étale topological cobordism.



750 G. Quick / Advances in Mathematics 214 (2007) 730–760
Definition 35. Let E ∈ Sp(Ŝ∗) be a profinite spectrum and let X ∈ Sm/k.

(1) We define the profinite étale cohomology of X in E to be the profinite cohomology theory
represented by E applied to the profinite space ÊtX, i.e.

En
ét(X) := En(ÊtX) = Hom ˆSH

(
Σ∞(ÊtX),E[n]),

where we add a base point if X is not already pointed.
(2) We define relative étale cohomology groups En

ét(X,U) for an open subscheme U ⊂ X by

En
ét(X,U) := En(Êt(X)/Êt(U)).

(3) Similarly, if X is a simplicial presheaf on Sm/k, we define the étale cohomology group of
X to be En

ét(X ) := Hom ˆSH(Σ∞(ÊtX ),E[n]).

The following fact may be shown in the standard way using Theorem 2.10 of [18].

Proposition 36. Let U
i

↪→ X
p←− V induce an elementary distinguished square [35]. Let E be a

profinite spectrum. Then there is a Mayer–Vietoris long exact sequence of graded groups

· · · → En
ét(X) → En

ét(U) ⊕ En
ét(V ) → En

ét(U ×X V ) → En+1
ét (X) → ·· · .

Proposition 37. Let E be a profinite spectrum. Let U ⊂ X be an open subscheme of X. We get a
long exact sequence of cohomology groups

· · · → En
ét(X)

j∗−→ En
ét(U)

∂−→ En
ét(X,U)

i∗−→ En+1
ét (X)

j∗−→ En+1
ét (U) → ·· ·

where j : ÊtU ↪→ ÊtX and i : (ÊtX,�) ↪→ (ÊtX, ÊtU) denote the natural induced inclusions.

Proof. Since ÊtU ↪→ ÊtX → Êt(X)/Êt(U) is isomorphic to a cofiber sequence in Ŝ∗, this is
just the usual long exact sequence of Hom-groups induced by a cofiber sequence in a simplicial
model category. �
Proposition 38. Let E be a profinite spectrum. Let X ∈ Sm/k. The projection p :X × A1 → X

induces an isomorphism p∗ :E∗
ét(X)

∼=−→ E∗
ét(X × A1).

Proof. This is clear since p induces a weak equivalence in Ŝ , see Theorem 27, and hence induces
isomorphisms on cohomology theories. �
Corollary 39. Let E be a profinite spectrum. Let V → X be an An-bundle over X in Sm/k.
Then p∗ :E∗

ét(X)
∼=−→ E∗

ét(V ) is an isomorphism.

We may summarize these results in the following theorem.

Theorem 40. Let E be a profinite spectrum. The étale cohomology theory E∗
ét(−) represented by

E satisfies the axioms of a cohomology theory on Sm/k of [30].
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Proof. We check the axioms of a cohomology theory in the sense of [30, Definition 2.0.1].
1. Localization: This is clear from Proposition 37.
2. Excision: Let e : (X′,U ′) → (X,U) be a morphism of pairs of schemes in Sm/k such

that e is étale and for Z = X − U , Z′ = X′ − U ′ one has e−1(Z) = Z′ and e :Z′ → Z is an
isomorphism. By [26, III, Proposition 1.27], we know that the morphism e induces an isomor-
phism in étale cohomology H ∗(Êt(X)/Êt(U);Z/�) ∼= H ∗(Êt(X′)/Êt(U ′);Z/�). Hence the map
Êt(X′)/Êt(U ′) → Êt(X)/Êt(U) is an isomorphism in Ĥ∗. Therefore, it induces the desired iso-
morphism E∗(Êt(X)/Êt(U)) ∼= E∗(Êt(X′)/Êt(U ′)) for every étale cohomology theory.

3. Homotopy invariance: This is the content of Proposition 38. �
Theorem 41. Let k be a field and let E be profinite spectrum such that each coefficient group
Eq is finitely generated abelian. For every scheme X in Sm/k, there is a convergent spectral
sequence

E
p,q

2 = H
p

ét

(
X;Z/�ν ⊗ Eq

) �⇒ E
p+q

ét

(
X;Z/�ν

)
.

Proof. By the hypothesis on Eq the groups Z/�ν ⊗ Eq are finite. The spectral sequence above
is hence the one of Proposition 21 together with the isomorphisms H ∗

ét(X;Z/�ν ⊗ Eq) ∼=
H ∗(ÊtX;Z/�ν ⊗ Eq) of Remark 26. The condition for strong convergence in Proposition 21
is satisfied since H

p

ét (X;Z/�ν ⊗ Eq) is a finite group for all p by [26, VI, Corollary 5.5]. �
4.2. Examples

4.2.1. Profinite étale K-theory
Definition 42. We define the profinite étale K-theory of a smooth scheme X to be the cohomology
theory represented by the profinitely completed spectrum K̂U.

As a first application, we consider a comparison statement for profinite étale K-theory and
for Friedlander’s étale K-theory in [13]. Let {Xs} ∈ pro-S be a pro-object in S and let BU be
the simplicial set representing complex K-theory. Friedlander defines the K-theory of {Xs} for
ε = 0,1 and k > 0 by

Kε
({Xs};Z/�ν

) = Hompro-H
({

ΣεXs

}
,
{
P nBU ∧ C

(
�ν

)})

where {P nBU} denotes the Postnikov tower of BU considered as a pro-object in S and C(�ν)

is the cofibre of the multiplication by �ν map S1 → S1. For a locally Noetherian scheme X,
Friedlander defines the étale K-theory by Kε

ét(X;Z/�ν) := Kε(EtX;Z/�ν). By the Atiyah–

Hirzebruch spectral sequences for ˆKU and Két of Theorem 41 and of [13], respectively, the
following result is an immediate consequence.

Proposition 43. For every scheme X of finite type over a separably closed field k the étale
K-theory groups K∗

ét(X;Z/�ν) of [13] are isomorphic to the profinite étale K-theory groups

K̂U
∗
ét(X;Z/�ν) defined above.
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4.2.2. Profinite étale Morava K-theory
Definition 44. We define the profinite étale Morava K-theory of a smooth scheme X to be the
cohomology theory represented by the profinitely completed Morava K-theory spectrum K̂(n)

for n � 0.

This theory satisfies in particular the conditions of Theorem 41. For n � 1, the coefficients
are given by K̂(n)∗ = Z/�[vn, v

−1
n ], where degvn = −2(�n − 1). In particular, for n � 1, the

groups K̂(n)q are finite for each q . Hence there is a converging spectral sequence from étale
cohomology to étale Morava K-theory for n � 1:

E
p,q

2 = H
p

ét

(
X; K̂(n)q

) �⇒ ˆK(n)
p+q

ét (X).

For schemes over C, it agrees with the usual topological Morava K-theory. This follows as for
the étale cobordism below from the generalized Riemann Existence Theorem of [2].

4.2.3. Profinite étale cobordism
Definition 45. We define the profinite étale cobordism of a smooth scheme X ∈ Sm/k, to be the
étale cohomology theory represented by the profinite cobordism spectrum M̂U.

Proposition 46. Let R be a strict local Henselian ring. Then

M̂U
∗
ét(SpecR) ∼= MU∗ ⊗Z Z� and M̂U

∗
ét

(
SpecR;Z/�ν

) ∼= MU∗ ⊗Z Z/�ν.

Proof. This may be easily deduced from Example 20, since Êt SpecR is contractible. The last
assertion follows since MU∗ has no torsion. �
Proposition 47. The (reduced) étale cobordism of a finite field k, chark �= �, is given by the

isomorphism M̂U
n

ét(k) = M̂U
n−1

and similarly for M̂U
∗
ét(k;Z/�ν).

Proof. The profinite space Êt k has the homotopy type of the circle S1 in Ŝ . �
The generalized Riemann Existence Theorem of [2, Theorem 12.9], or the comparison theo-

rem for étale cohomology and the Atiyah–Hirzebruch spectral sequences for complex and étale
cobordism imply the following proposition.

Proposition 48. Let X be an algebraic variety over C. Let X(C) be the topological space of
complex points. For every ν, there is an isomorphism

M̂U
∗
ét

(
X;Z/�ν

) ∼= MU∗(X(C);Z/�ν
)
.

There are several other obvious applications of the Riemann Existence Theorem and the
Atiyah–Hirzebruch spectral sequence. For example, we can deduce a proper base change theorem
or an isomorphism for separably closed field extensions etc. from the corresponding theorems
for étale cohomology. Furthermore, we can calculate the étale cobordism of a smooth projective
curve over a separably closed field.

Finally, we remark that the morphism of profinite spectra M̂U → HZ/�ν induced by the
orientation yields a unique map of profinite étale cohomology theories M̂U

∗
ét(X;Z/�ν) →

H ∗(X;Z/�ν) for every X in Sm/k.
ét
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5. Algebraic versus étale cobordism

The main application of the étale realization functor is existence of a canonical map from
algebraic to étale cobordism. We have to show that étale cobordism is an oriented theory on
Sm/k.

5.1. Étale cobordism is an oriented cohomology theory

We prove that M̂U
2∗
ét (−;Z/�) is an oriented cohomology theory in the sense of [25] on the

category Sm/k of smooth quasi-projective schemes over a suitable base field. The key point is
the projective bundle formula.

Let k be a field and let Gk be its absolute Galois-group. We have to restrict our attention to
the fields with finite �-cohomological dimension satisfying the following property.

Definition 49.

(1) A profinite space X is said to be without �-torsion if the canonical map H ∗(X;Z/�ν) →
H ∗(X;Z/�) is surjective for all integers ν � 0.

(2) A field k is said to be without �-torsion if the canonical map in Galois-cohomology
H ∗(Gk;Z/�ν) → H ∗(Gk;Z/�) is surjective for all integers ν � 0.

Example 50. 1. Every separably closed field is without �-torsion.
2. A finite field has no �-torsion.
3. Local fields are without �-torsion if � is different from the residue characteristic of k.
4. Let Pn

k be the projective space of dimension n over k. If k is a field without �-torsion then

the profinite space Êt Pn
k has no �-torsion in Ŝ for every n. This follows from the projective

bundle formula for étale cohomology.

In the rest of this chapter we will always assume that k is a field without �-torsion and with
finite �-cohomological dimension.

Proposition 51. The étale cobordism of Pn
k is given by the direct sum

M̂U
∗
ét

(
Pn

k ;Z/�
) ∼=

n−1⊕
i=0

M̂U
∗
ét(k;Z/�).

Proof. Since Êt Pn
k is a space without �-torsion, the corresponding Atiyah–Hirzebruch spectral

sequence collapses at the E2-term and gives an isomorphism

M̂U
∗(

Êt Pn
k ;Z/�

) ∼=−→
⊕

s

H s
(
Êt Pn

k ;Z/� ⊗ MU∗−s
)
, (5)

as described in [8, Proposition 2.1.9]. The assertion now follows from the projective bundle
formula for étale cohomology. �

I am grateful to Francois-Xavier Dehon for an explanation of the arguments proving the fol-
lowing proposition.
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Proposition 52. For the projective n-space and every smooth scheme X over k the canonical
map

M̂U
∗
ét

(
Pn

k ;Z/�
) ⊗M̂U

∗
ét(k;Z/�)

M̂U
∗
ét(X;Z/�)

∼=−→ M̂U
∗
ét

(
Pn

k ×k X;Z/�
)

is an isomorphism.

Proof. This is a classical argument. In the profinite setting, this has been worked out by Dehon.
The case with Z/�-coefficients can be done in a similar way. It is deduced from the Künneth for-
mula for the Z/�-cohomology of Êt Pn

k ∧Êt k ÊtX. The point is that M̂U
∗
ét(P

n
k ;Z/�) (respectively

H ∗
ét(P

n
k ;Z/�)) is a free M̂U

∗
ét(k;Z/�)-module (respectively H ∗

ét(k;Z/�)-module). �
Let O(1) → Pn

k be the canonical quotient line bundle. We conclude from the proof of Proposi-

tion 51 that the orientation map M̂U
∗
(Êt Pn

k) → H ∗(Êt Pn
k ;Z/�) factors through the isomorphism

(5). In particular, this implies that the element ξH = c1(O(1)) ∈ H 2(Êt Pn
k ;Z/�) induces an ele-

ment ξM̂U ∈ M̂U
2
(Êt Pn

k ;Z/�), which corresponds to a morphism in ˆSH:

ξM̂U : Σ̂∞(
Êt Pn

k

) −→ M̂U/� ∧ S2.

Now let E → X be a vector bundle over X in Sm/k and let O(1) be the canonical quotient
line bundle over P(E). This bundle determines a morphism P(E) → PN

k for some sufficiently

large N . Together with the morphism ξM̂U we get an element ξM̂U ∈ M̂U
2
ét(P(E);Z/�).

Theorem 53 (Projective Bundle Formula). Let E → X be a rank n vector bundle over X in
Sm/k. Then M̂U

∗
ét(P(E);Z/�) is a free M̂U

∗
ét(X;Z/�)-module with basis (1, ξ, ξ2, . . . , ξn−1).

Proof. We prove the assertion first for the case of a trivial bundle on X. As in Lemma 28, one
proves that the canonical morphism of profinite spaces Êt(X) ×Êtk Êt(Pn

k ) → Êt(X ×k Pn
k ) is a

weak equivalence in Ŝ . Hence this case follows from Propositions 51 and 52. For the general
case, since E is locally trivial for the Zariski topology on X, it suffices to show that the theorem
holds for X if it holds for open subsets X0, X1 and X0 ∩ X1, with X = X0 ∪ X1. This may be
checked by a standard argument using the Mayer–Vietoris sequence. �

We use Grothendieck’s idea to introduce higher Chern classes for vector bundles.

Definition 54. Let E be a vector bundle of rank n on X in Sm/k and let ξM̂U be as above. Then

we define the ith Chern class of E to be the unique element ci(E) ∈ M̂U
2i

ét (X;Z/�) such that
c0(E) = 1, ci(E) = 0 for i > n and Σn

i=0(−1)ici(E)ξn−i = 0.

The results of Panin in [30] then imply the following theorem.
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Theorem 55. The étale cobordism M̂U
2∗
ét (−;Z/�) is an oriented ring cohomology theory on

Sm/k in the sense of [30, Definition 3.1.1]. This implies that for every projective morphism
f :Y → X of codimension d there are natural transfer maps

f∗ : M̂U
∗
ét(Y ;Z/�) → M̂U

∗+2d

ét (X;Z/�)

which satisfy the axioms of a push-forward in an oriented cohomology theory in the sense of [25].

Remark 56. 1. If k is separably closed, there are several simplifications. First of all, the above
statements all hold without Z/�-coefficients, i.e. the Projective Bundle and the Künneth Formula
hold for M̂U and M̂U/�ν as well.

Secondly, the choice of an orientation is canonical. Using the isomorphism LÊt MGL ∼= M̂U,

we choose xM̂U ∈ M̂U
2
(Êt P∞

k ) as the image of the orientation xMGL : P∞ → MGL∧P1 under Êt.
2. A priori, the definition of E(P∞) := limn E(Pn

k) for a cohomology theory E in [30, 1.1]

might differ from our definition. But since M̂U
i

ét(P
n
k ;Z/�) is a finite group for every i and n

by Proposition 51, the lim1
n of these groups vanishes. Hence there is a canonical isomorphism

M̂U
i

ét(P
∞
k ;Z/�) ∼= limn M̂U

i

ét(P
n
k ;Z/�) for P∞

k = colimn Pn
k . Hence, in the case of étale cobor-

dism with Z/�-coefficients, Panin’s and our definitions are compatible.

5.2. Comparison with Ω∗

We consider the algebraic cobordism theory Ω∗(−) of [25]. As a corollary of Theorem 55,
using the universality of Ω∗ we get the following theorem.

Theorem 57. There is a canonical morphism of oriented cohomology theories

θ :Ω∗(X) → Ω∗(X;Z/�) → M̂U
2∗
ét (X;Z/�)

defined by sending a generator [f :Y → X] ∈ Ω∗(X), f : Y → X a projective morphism be-

tween smooth schemes, to the element f∗(1Y ) ∈ M̂U
2∗
ét (X;Z/�).

If k is a field of characteristic zero, Theorem 4 of [25] states that Ω∗(k) is isomorphic to the
Lazard ring L∗. It is conjectured that this isomorphism holds for every field, see the conjecture
of [25, §4.3.2].

Proposition 58. For every separably closed field k, the morphism

θ :Ω∗(k;Z/�ν
) → M̂U

2∗
ét

(
k;Z/�ν

)

is surjective.
If we suppose in addition that the conjecture of [25] is true for k, then θ is an isomorphism.

Proof. Consider the canonical map Φ : L∗ ⊗ Z/�ν → Ω∗(k;Z/�ν). It is split injective for
every field, see [25, Corollary 4.3.3]. When we compose this map with θ :Ω∗(k;Z/�ν) →
M̂U

2∗
ét (k;Z/�ν), we get the canonical map L∗ ⊗ Z/�ν Φ−→ Ω∗(k;Z/�ν)

θ−→ M̂U
2∗
ét (k;Z/�ν).
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Since this map is unique, it must be the canonical isomorphism. Hence θ : Ω∗(k;Z/�ν) →
M̂U

2∗
ét (k;Z/�ν) is surjective. The last assertion follows in the same way if we assume the con-

jecture to be true. �
5.3. Comparison with MGL∗,∗

Let k be a field as above. Let V be a vector bundle of rank d over X in Sm/k. We recall
that the Thom space Th(V ) ∈ LU(k) of V is defined to be the quotient Th(V ) = V/(V − i(X)),
where i :X → V denotes the zero section of V . We reformulate a lemma from A1-homotopy
theory.

Proposition 59. Let V be a vector bundle over X and P(V ) → P(V ⊕ O) be the closed em-
bedding at infinity. Then the canonical morphism of pointed sheaves P(V ⊕O)/P(V ) → Th(V )

induces a weak equivalence in Ŝ∗ via Êt.

Proof. This is the same proof as for Proposition 3.2.17 of [29] where we use the fact that Êt
preserves A1-weak equivalences between smooth schemes by Theorem 27 and commutes with
quotients. �

Now we define the Thom class of V in M̂U
2d

ét (Th(V );Z/�). From the isomorphism P(V ⊕
O)/P(V ) ∼= Th(V ) we deduce an exact sequence induced by the corresponding cofiber sequence

M̂U
∗
ét

(
Th(V );Z/�

) → M̂U
∗
ét

(
P(V ⊕O);Z/�

) → M̂U
∗
ét

(
P(V );Z/�

)
.

Using the projective bundle formula of Theorem 53 this sequence is isomorphic to the exact
sequence

M̂U
∗
ét

(
Th(V );Z/�

) → M̂U
∗
ét(X;Z/�)

[
1, u, . . . , ud

] → M̂U
∗
ét(X;Z/�)

[
1, . . . , ud−1].

The element x := ud − c1(V )ud−1 + · · · + (−1)dcd(V ) ∈ M̂U
∗
ét(X;Z/�)[1, u, . . . , ud ] is sent to

ud − c1(V )ud−1 + · · · + (−1)dcd(V ) ∈ M̂U
∗
ét(X;Z/�)[1, u, . . . , ud−1] which is 0 by the defini-

tion of Chern classes. By exactness, there is an element thét(V ) ∈ M̂U
2d

ét (Th(V );Z/�) that is sent
to x ∈ M̂U

∗
ét(X;Z/�)[1, u, . . . , ud ]. We call thét(V ) the étale Thom class of V . It corresponds to

a morphism in ˆSH

thét(V ) : Σ̂∞(
Êt Th(V )

) → M̂U/� ∧ S2d .

We apply this argument to the tautological n-bundle γn over the infinite Grassmannian. Since
MGLn = Th(γn), we get a morphism in ˆSH2

φ : LÊt(MGL) −→ M̂U/�.

Recall the definition of algebraic cobordism for a scheme X in Sm/k

MGLp,q(X) := HomSH(k)

(
Σ∞

1 (X),MGL[p − 2q] ∧ (
P1)∧q)

,

P
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where MGL[n] := MGL∧ (S1
s )∧n, S1

s denoting the simplicial circle. One sees that the elements in
degree p,q are sent to elements in degree p via φ. We summarize this discussion in the following
theorem.

Theorem 60. There is a natural map for every X in Sm/k

φ : MGLp,q(X;Z/�) → M̂U
p

ét(X;Z/�)

which defines a morphism of oriented cohomology theories.

By the universality of Ω∗(−), we get the following corollary.

Corollary 61. For every ∈ Sm/k, there is a canonical commutative diagram of morphisms of
oriented cohomology theories

Ω∗(X;Z/�)

θM̂U

θMGL
MGL2∗,∗(X;Z/�)

φ

M̂U
2∗
ét (X;Z/�).

5.4. The Galois action on étale cobordism

Let k be a field of characteristic p �= � and let k be a separable closure of k. If X is a scheme
over k, there is a natural action on Xk = X ⊗k k of the Galois group Gk := Gal(k/k) of k. By
naturality Gk also acts on ÊtXk .

Now Ω∗(k) is generated by classes [π :Y → Speck] of smooth projective schemes Y over k,
see [25, §2.5.4]. Hence in order to determine the action of the absolute Galois group on étale
cobordism, it suffices to know the action on each such Y . Since k is separably closed, the induced
morphism σ :Y → Yσ induces an isomorphism on étale cohomology with Z/�-coefficients,
where Yσ is the twisted k-scheme with structure morphism σ ◦ π . Hence σ induces an iso-
morphism of homotopy classes σ : ÊtYk

∼=−→ ÊtYσ in Ĥ. This implies the following proposition.

Proposition 62. The action of Gk on M̂U
∗
ét(k;Z/�ν) is trivial.

Next, we calculate the profinite étale cobordism groups of a local field, i.e. either a finite
extension of the field Qp or a finite extension of the field of formal power series F((t)) over
a finite field of characteristic p. We assume p �= � and we denote by q = pf the number of
elements in the residue class field of k. Let �ν0 = (q − 1, �ν) be the greatest common divisor of
q − 1 and �ν .

Corollary 63. Let k be a local field. For all n, the (reduced ) profinite étale cobordism groups
with Z/�ν -coefficients of k are given by

M̂U
n

ét

(
k;Z/�ν

) =
{

Z/�ν0 ⊗ MUn−2, n even,

Z/�ν0 ⊗ MUn−1, n odd.
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Proof. Since Z/�ν ⊗ MUt is a finitely generated free Z/�ν -module with trivial Gk-action, we
may identify the Galois cohomology groups Hi(k;Z/�ν ⊗ MUt ) with Hi(k;Z/�ν) ⊗ MUt . The
assertion follows from the local Tate Duality for Galois cohomology and the Atiyah–Hirzebruch
spectral sequence. �
5.5. Inverting the Bott element

Let Hp(X;Z/n(q)) denote the motivic cohomology of a smooth scheme X over a field k.
For Speck there is an isomorphism H 0(Speck;Z/n(1)) ∼= μn(k) with the group of nth roots of
unity in k. Assuming that k contains an nth root of unity ζ , we have a corresponding motivic
Bott element βn ∈ H 0(Speck;Z/n(1)). Levine has shown in [24] that motivic Z/n-cohomology
of a smooth scheme over k agrees with étale Z/n-cohomology after inverting the Bott element.
I am grateful to Marc Levine for an explanation of his ideas.

Furthermore, Hopkins and Morel announced the construction of a motivic Atiyah–Hirzebruch
spectral sequence. It is the slice filtration spectral sequence conjectured by Voevodsky in [36]
from motivic cohomology with coefficients in the ring MU∗ to algebraic cobordism

E
p,q,2i

2 = Hp,q
(
X,MU2i

) �⇒ MGLp+2i,q+i (X) (6)

with differentials d2r+1 :Ep,q,2i

2r+1 → E
p+2i+1,q+i,2i−2r

2r+1 .

We consider the spectral sequence for Speck. Since E
p,1,q

2 (Speck) is concentrated in de-
grees p = 0 and p = 1, we deduce MGL0,1(k) ∼= k×. For Z/n-coefficients, the exact sequence
for coefficients implies that we get an isomorphism MGL0,1(k;Z/n) ∼= μn(k) and, via the
spectral sequence, the motivic Bott element defined above, is sent to an induced Bott element
βn ∈ MGL0,1(k;Z/n).

Let us now suppose that k is algebraically closed, n = �ν and chark �= �. In particular, k con-
tains an �ν th root of unity ζ . It defines an element ζ ∈ H 0

ét(Spec k;μ�ν ). The element ζ · 1M̂U/�ν

induces via the Atiyah–Hirzebruch spectral sequence an element ζM̂U/�ν ∈ M̂U
0
ét(Speck;Z/�ν).

The multiplication with ζ yields an isomorphism of spectral sequences and hence multiplication
with ζM̂U/�ν is an isomorphism on étale cobordism. Furthermore, the map φ sends β�ν to ζM̂U/�ν .

This implies that φ induces a localized map φ : MGL∗,∗(X;Z/�ν)[β−1] → M̂U
∗
ét(X;Z/�ν).

Finally, motivic cohomology may be represented in SH(k) by the Eilenberg–Mac Lane spec-
trum HZ/�ν , defined in degree n by the group completion of the symmetric products

K
(
Z/�ν(n),2n

) =
( ∐

d�0

Sd
((

P1)∧n))+
⊗ Z/�ν.

Using the simplicial version of the Dold–Thom theorem and the Künneth isomorphism for sym-
metric products in étale cohomology over an algebraically closed field of [3, Exposé XVII,
Théorème 5.5.21], one shows as before that the étale realization of HZ/�ν is isomorphic in ˆSH
to the profinite Eilenberg–Mac Lane spectrum representing Z/�ν -cohomology. Hence the étale
realization defines a map from motivic Z/�ν -cohomology to étale Z/�ν -cohomology. With a
fixed isomorphism Z/�ν(1) ∼= Z/�ν , this map is the unique map of oriented cohomology the-
ories. Furthermore, localization at β is exact. Consequently, the étale realization yields a map
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of Atiyah–Hirzebruch spectral sequences, whose E2-terms agree by Theorem 1.1 of [24]. This
implies the following theorem.

Conditional Theorem 64. Let X be a smooth scheme of finite type over an algebraically
closed field k with chark �= �. If we assume the existence and convergence of the above Atiyah–
Hirzebruch spectral sequence (6) from motivic cohomology to algebraic cobordism, then φ is an
isomorphism

φ :

(⊕
p,q

MGLp,q
(
X;Z/�ν

))[
β−1] ∼=−→

⊕
p,q

M̂U
p

ét

(
X;Z/�ν

)
.
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