QUASI-BOOLEAN GROUPS

AMBRUS PAL AND GEREON QUICK

ABSTRACT. We give several equivalent characterisations of the maximal pro-
2 quotients of real projective groups. In particular, for pro-2 real projective
groups we provide a presentation in terms of generators and relations, and a
purely cohomological characterisation. As a consequence we explicitly recon-
struct such groups from their mod 2 cohomology rings.

1. INTRODUCTION

Let G be a profinite group. An embedding problem for G is a solid diagram:

G
= i¢>
2

where A and B are finite groups, the solid arrows are continuous homomorphisms
and « is surjective. A solution of an embedding problem is a continuous homo-
morphism qg : G — B which makes the diagram commutative. We say that the
embedding problem above is real if for every involution t € G with ¢(t) # 1 there
is an involution b € B with «(b) = ¢(t), i.e., if involutions do not provide an
obstruction for the existence of a solution.

Definition 1.1. Following Haran and Jarden [5] we say that a profinite group G
is real projective if G has an open subgroup without 2-torsion, and if every real
embedding problem for G has a solution.

By the work of Haran—Jarden [5], real projective groups play an important role
in Galois theory as they are exactly the Galois groups of pseudo real closed fields,
which, by the work of Haran [4], can also be characterised as the fields with virtual
cohomological dimension at most one (see [8, Section 2]). For a real projective
group G, we show in [8, Theorem 1.3] that the differential graded algebra C*(G, F)
of continuous cochains is formal, i.e., C*(G,F3) is quasi-isomorphic as differential
graded algebras to its cohomology algebra. Roughly speaking, this means that the
cohomology algebra of a real projective group already contains all the information
of the differential graded algebra C*(G,F3). The purpose of the present paper is
to show that, in fact, the maximal pro-2 quotient of a real projective group can
be reconstructed entirely from the mod 2 cohomology ring. In particular, we show
that pro-2 real projective groups can be reconstructed entirely from their mod 2
cohomology ring. In order to further describe our results we recall the following
terminology from [g].
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Definition 1.2. We call an Fp-algebra B® = @, B’ a graded Boolean algebra if
BY = Fy and there is a Boolean ring B (see Section [2)) such that, for every i > 1,
we have B' = B and multiplication in B*® is induced by B. We call an Fs-algebra
D* = @;>¢ D" a dual algebra if DY = Fy, and D’ = 0 for i > 2. The connected sum
D* n B® is the graded Fa-algebra with (D* n B*)? = Fy, (D* n B*)' = D'@ B’ for
i > 1 and multiplication D'B* and B?D! is set to be zero for all 4 > 1.

In [8], we deduce from Scheiderer’s work in [I0] that the mod 2 cohomology
algebra of a real projective group is a connected sum of a dual and a Boolean
graded algebra. Hence, in the terminology of Definition below, the maximal
pro-2 quotient of a real projective group is a cohomologically quasi-Boolean group.
The anonymous referee of [§] suggested that the latter property may even charac-
terise pro-2 real projective groups completely. The purpose of the present paper is
to prove this conjecture. In fact, we prove the stronger fact that every pro-2 real
projective group has an explicit description as a certain free pro-2 product with
explicit generators and relations provided by the cohomology ring (see Theorem
below). This result significantly strengthens a consequence of the main result
of [8]. According to the latter, for a real projective group G, the differential graded
Fs-algebra C* (G, F2) and its cohomology H* (G, F2) is Koszul. Hence, by a theorem
of Positselski, the Fa-linear co-algebra of the maximal pro-2 quotient H of G can
be reconstructed explicitly from the cohomology ring H*(H,Fs) =~ H*(G,F3) using
the bar construction (see Example 6.3 of [d]). Here we reconstruct the group itself
via an even more transparent recipe.

We now describe our main results in more detail. To do so we need the following
constructions and terminology:

Definition 1.3. The free product G *, Go of two pro-p groups Gp,G3 is the
following: let G1 * G5 be the discrete free product of G; and G5 and let N be the
family of normal subgroups N of G such that (G; * G3)/N is a finite p-group and
N n G1, N n Gy are open subgroups of G, G respectively. Then
Gl *p G2 = lgl (Gl * GQ)/N
NeN
Definition 1.4. Next we are going to define, following [2], free pro-2 products of
order two groups over topological spaces. For every topological space X let sk x Z/27Z
denote the group which is freely generated by the elements of X, subject to the
relation that these elements are involutions, and let A/ be the family of normal
subgroups N of sk x Z/27Z such that sk x Z/27Z/N is a finite 2-group and the compo-
sition of the natural inclusion ¢: X — sk x Z/2Z and the quotient homomorphism
%x Z/27 — skx Z/2Z/N is continuous with respect to the discrete topology on
*x Z/2Z/N. Then we set
B(X) = lim % Z/2Z/N.
Nen X

Definition 1.5. We say that a pro-2 group is a Boolean group if it is isomorphic to
B(X) for some topological space X. (We will see in Proposition below that we
may assume without the loss of generality that X is profinite.) We say that a pro-2
group is a quasi-Boolean group if it is the free product of a free pro-2 group (in the
sense of [I2] 1.5 on pages 7-8]) and a Boolean group. We say that a pro-2 group
is a cohomologically Boolean group if its mod 2 cohomology is a graded Boolean
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algebra. We say that a pro-2 group is a cohomologically quasi-Boolean group if its
mod 2 cohomology is the connected sum of a dual algebra and a graded Boolean
algebra.

We can now state our main results:

Theorem 1.6. Let G be a pro-2 group. Then the following are equivalent:

(1) G is quasi-Boolean.

(i7) G is real projective.
(#i7) G is the maximal pro-2 quotient of a real projective profinite group.
(iv) G is cohomologically quasi-Boolean.

Perhaps the most interesting feature of this theorem is, compared to the results
of the paper [6], that it incorporates a purely cohomological characterisation of
these pro-2 groups. Our proof is a bit more involved than it might be anticipated;
it uses results of Haran—-Jarden in the arithmetic of fields, for example a group-
theoretical characterisation of real projective groups, a theorem on the existence of
sections of profinite principle G-bundles, and profinite versions of two theorems of
Quillen on group cohomology. We will also show the following

Corollary 1.7. Let G be a pro-2 group. Then the following are equivalent:

(1) G is Boolean.
(i) G is cohomologically Boolean.

Using our results we also demonstrate that quasi-Boolean groups can be recon-
structed from their mod 2 cohomology. For every set Y, let F(Y') denote the free
pro-2 group as defined in [12] Section 1.5 on pages 7-8]. Let G be a quasi-Boolean
group such that H*(G,F5) is the connected sum of a dual algebra D* and a graded
Boolean algebra B* associated to the Boolean ring B. Let Y be a basis of D! and
let X be the spectrum of B.

Theorem 1.8. The pro-2 group G is isomorphic to F(Y') xo B(X).

Content. In Section[2] we give a modern exposition of the theory of Boolean rings,
including Stone duality, using now standard tools from commutative algebra. We
cover some background material on profinite spaces, including the profinite com-
pletion functor, in the Section In Section 4] we prove that profinite principal
G-bundles have sections, a result originally announced by Morel in [7] without
proof. We prove that the class of pro-2 real projective groups and the maximal
pro-2 quotients of real projective groups are the same in Section [5 the key step
being a simple group-theoretical lemma. In Section [6] we show that the class of
quasi-Boolean and pro-2 real projective groups are the same, heavily relying on the
main results of the previous sections and several theorems of the paper [6]. Then we
present, profinite versions of some classical results of Quillen on the cohomology of
groups, partially following the suggestion at the end of [11], and use these results to
derive a local-global principle for the cohomology of cohomologically quasi-Boolean
groups analogous to Scheiderer’s theorem for real projective groups in Section
In section [8| we prove the main results using cohomological obstruction theory for
central embedding problems and the local-global principle of the previous section.

Acknowledgement. This paper was written as a response to one of the questions
asked by the referee to our paper [§]. We are very thankful for the anonymous
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referee’s comments. Both authors gratefully acknowledge the partial support by
the RCN Project No. 313472 Equations in Motivic Homotopy.

2. A PRIMER ON BOOLEAN RINGS

In this section we recall and prove the results we need on Boolean rings. In
particular, we deduce Stone duality in Theorem

Definition 2.1. A ring R is called Boolean if 22 = x for every z € R.

Examples 2.2. The field with two elements F5 is a Boolean ring. In fact, since
2(1 —x) = 0 for all  in a Boolean ring, Fs is the only Boolean integral domain.
The direct product of Boolean rings is Boolean, and so, for every set X, the direct

product ring:
Fy =[] F2
e X
is a Boolean ring. Now let X be a topological space, and let B(X) denote the ring
of functions f: X — Fy which are continuous with respect to the discrete topology

on Fs. Since the subrings of Boolean rings are Boolean, and B(X) is a subring of
FX, we get that B(X) is Boolean, too.

Proposition 2.3. In a Boolean ring R the following hold:

(1) we have 2x =0 for every x € R,

(i7) every prime ideal p is mazimal, and R/p is the field with two elements,
(#i1) we have (x,y) = (x +y — zy) for every x,y € R,
(iv) every finitely generated ideal is principal.

Proof. Since
2x = (22)? = 42? = 4z,

we get that 2z = 0 by subtracting 2z from both sides. Now let p be a prime
ideal in R. Then the quotient R/p is a Boolean ring. For every x € R/p, we have
(1 — ) = 0 which implies that z = 0 or = 1 since R/p is an integral domain.
Claim (i7) follows. Note that

x(x+y—xy)=x2+xy—a?2y=x+a:y—xy=w.

Hence z,y € (x +y — zy). Since  +y — 2y € (z,y), claim (i77) is clear. Let
I = (z1,x2,...,2,) be an finitely generated ideal of R. Since

I = ((‘r17x27 AR 71.77,71)7‘,1:77,)7

we may assume by induction on n that I = (z,y) for some z,y € R. The claim now
follows from part (ii4). O

Proposition 2.4. The spectrum Spec(R) of a Boolean ring is compact and totally
separated.

Proof. Since the spectrum of a commutative ring with a unity is compact, the same
holds for Spec(R), too. Recall that a topological space X is totally separated if for
any two distinct points x,y € X there exist disjoint open sets U < X containing
x and V < X containing y such that X is the union of U and V. Now let p,q €
Spec(R) be two distinct points. Since they are maximal ideals, there is an z € R
such that € p and = ¢ q. Since R/p = Fy by part (i¢) of Proposition the
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former is equivalent to 1 — z ¢ p. As usual for every f € R let D(f) < Spec(R)
denote the open subset

(2.4.1) D(f) = {p € Spec(R) | f ¢ p}.

Then p € D(1—x),q € D(zx), the intersection D(z) n D(1 — z) is empty by part (i7)
of Proposition while the union D(x)u D(1—2x) is Spec(R), since if 2,1 —x € m
for some m € Spec(R) then 1 € m which is a contradiction. O

Notation 2.5. Let R be a Boolean ring. Then for every a € R the corresponding
section of the structure sheaf of Spec(R) is a continuous function
o(a): Spec(R) — Fy
by part (ii) of Proposition and the furnished map
o: R — B(Spec(R))
is a ring homomorphism.

Theorem 2.6. For every Boolean ring R, the map o: R — B(Spec(R)) is an
isomorphism.

Proof. For every x € R we have ™ = x by induction, so if z is nilpotent, then it is
zero. Therefore the nilradical of R is zero, so by Krull’s theorem o is injective. So
we only need to show that o is surjective. Let f: Spec(R) — F3 be a continuous
function. Then the set

D(f) = {p € Spec(R) | f(z) = 1}
is a closed subset, so it is compact. But it is also open, so it can be covered by
open subsets of the form D(a), where a € R by the definition of the topology of the
spectrum of rings. Since D(f) is compact, it can be covered by finitely many such,
SO
D(f) = D(a1) v D(az) v --- v D(an)

for some a1, as,...,a, € R. By part (iv) of Proposition there is an a € R such
that (a) = (a1,...,a,). Then

D(a) = {p € Spec(R) |
= {p € Spec(R) | (a) £ p}
= {p € Spec(R) | (a1,...,an) € p}
= {p € Spec(R) | a; ¢ p for some i}
= D(a1) u D(az) u --- v D(ay,),
so D(f) = D(a). Since f and a take values in Fy, we get that f = a. a

Notation 2.7. Let X be a topological space. Then for every p € X the set
B(p) = {z € B(X) | z(p) = 0}

is the kernel of a surjective ring homomorphism B(X) — Fa, so it is a maximal
ideal in B(X). Consequently, we have an induced map

B: X — Spec(B(X)).
For every « € B(X) the pre-image
BHD(x)) = {pe X |z(p) =1}



6 AMBRUS PAL AND GEREON QUICK

is open. Since the sets {D(z) | z € B(X)} form a sub-basis of Spec(B(X)), we get
that 8: X — Spec(B(X)) is continuous.

Theorem 2.8. When X is compact and totally separated, then 3 is a homeomor-
phism.

Proof. Since X is compact and Spec(B(X)) is Hausdorff, it will be sufficient to
show that 8 is a bijection. Let z,y € X be two distinct points. Since X is to-
tally separated, so there exist disjoint open sets U < X containing x and V < X
containing y such that X is the union of U and V. Let f: X — Fy be the charac-
teristic function of U. It is in B(X) since the complement of U is open, too. Clearly
fepBly), but f ¢ p(x), so S is injective.

For every ideal I <B(X) let Z(I) € X denote the closed subset

Z(I)={ze X | fl@)=0 (VfeI)}.

We claim that for every proper ideal I < B(X) the set Z(I) is non-empty. First
consider the case when I = (f) for some f € B(X). Then

Z(I) ={z e X | f(z) = 0},

so if this set is empty, then f is the identically one function, and hence I = (1) =
B(X) is not proper, a contradiction. Next consider the case when I is finitely
generated; then it is principal by part (iv) of Proposition so Z(I) is non-empty
by the above. Finally, consider the general case. Then Z(I) is the intersection of
sets of the form Z(J) where J is a finitely generated ideal of I. Since the latter
collection of sets is closed under finite intersections, and each member is non-empty
by the above, we get Z(I) is also non-empty, since X is compact.

Now let m <« B(X) be a maximal ideal. By the above there is an = € Z(m).
Clearly 5(z) 2 m, but m is maximal, and hence 8(x) = m. Therefore j is surjective,
too. (]

Notation 2.9. Let BO denote the category of Boolean rings where morphisms
are ring homomorphisms, and let CTS denote the category of compact, totally
separated topological spaces where morphisms are continuous maps. There are two
contravariant functors

B: CTS - BO, X +— B(X),
which is well-defined as we saw in Examples and

S: BO —» CTS, R~ Spec(R),
which is well-defined by Proposition [2.4]

Theorem 2.10 (Stone duality). The functors B and S are a pair of dualities of
categories.

Proof. By Theorem the map o is a natural isomorphism between the identity
of BO and B o S. By Theorem the map S is a natural isomorphism between
the identity of CTS and S o B. O

Corollary 2.11. Let R be a finite Boolean ring. Then the following are equivalent:
(i) R is finite.

(i) R is finitely generated as an Fy-algebra.

(7i1) R is Noetherian.

(iv) R is Artinian.
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(v) Spec(R) is finite.
(vi) R =T for a finite set X.

In this case R = ]ngec(R),

Proof. Every Boolean ring is an Fs-algebra, so if R is finite, then it is finitely
generated as an Fa-algebra, and hence (¢) implies (iz). Every finitely generated Fa-
algebra is Noetherian by Hilbert’s basis theorem, so (iz) implies (i¢i). Every Boolean
ring is zero dimensional by part (i7) of Proposition so if it is Noetherian, it
is Artinian by a standard theorem in commutative algebra (see [I, Theorem 8.5
on page 90]). Therefore (¢i7) implies (iv). Every Artinian ring is a finite direct
product of Artinian local rings (see [I, Theorem 8.7 on page 90]), so its spectrum
is finite. Therefore (iv) implies (v). Now let R be a Boolean ring whose spectrum
is finite. Since Spec(R) is totally separated by Proposition it is discrete, and
hence R =~ Fspec(m by Theorem In particular, (v) implies (vi). If R ~ F§ for
a finite set X, then R is clearly finite, so (vi) implies (7). O

Notation 2.12. Let FBO denote the category of finite Boolean rings where mor-
phisms are ring homomorphisms, and let FTS denote the category of finite, totally
separated topological spaces where morphisms are continuous maps. Note that the
latter is the same as the category of finite, discrete topological spaces. There are
two restrictions of functors

B|FTS3 FTS — FBO, X — B(X)

and
S|FBO: FBO — FTS, R~ SpeC(R),
where the latter is well-defined by Corollary

Theorem 2.13. The functors Bleprs and S|prs are a pair of dualities of cate-
gories.

Proof. The restrictions of the natural isomorphisms  and ¢ onto FTS and FBO
are the respective required natural isomorphisms. ([l

Definition 2.14. Let R be a Boolean ring. We say that two elements =,y € R are
orthogonal if zy = 0. We say that an element a € R is an atom if it is non-zero
and cannot be written as the sum of two non-zero orthogonal elements of R. The
support of an element z € R is the subset D(f) < Spec(X) introduced in (2.4.1).

Lemma 2.15. Let R be a Boolean ring. Then the following holds:

(1) Two elements x,y € R are orthogonal if and only if the intersection of their
support is empty.
(ii) A non-zero element a € R is an atom if and only if its support cannot be
written as the disjoint union of two non-empty open and closed subsets.
(#it) Fuvery pair of different atoms of R are orthogonal to each other.

Proof. Note that the support of the product xy is the intersection of the supports
of z and y. Since the support of an element of R is empty if and only if it is zero
by Theorem claim (¢) follows. If a = & + y such that z,y are orthogonal and
both non-zero, then the support of a is the disjoint union of the supports of x and
y by part (). On the other hand if the support of a is the disjoint union of the
non-empty open and closed subsets X and Y, there are elements =,y € R whose
support is X, Y, respectively, by Theorem By part (i) these are orthogonal,
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non-zero and their sum has the same support as a. So a = x + z, and hence claim
(i) is true.

Let a,b € R be two atoms whose product is non-zero. Then a = ab + a(1 —b)
and aba(l —b) = a?(b— b%) = 0, so a(1 —b) = 0 by the definition of atoms. We
get that a = ab. The same reasoning for b show that b = ab. Therefore a = b, and
hence (#i7) holds. O

Corollary 2.16. Let R be a finite Boolean ring. Then the atoms of R form a
natural basis of R whose elements are orthogonal to each other. Moreover, every
orthogonal basis consists of atoms.

Proof. By Corollary the topological space Spec(R) is finite, discrete, and

R >~ FSPEC(R). Therefore, an element of R is an atom if and only if its support is

a point by claim (i) of Lemma [2.15] These clearly form a basis of R and they are
orthogonal by claim (i) of Lemma [2.15]

Now let eq,es,...,e, be an orthogonal basis. We need to show that each e;
is an atom. We may assume without the loss of generality that i = 1. Let = be
characteristic function of an element of the support of e;. Then z is an atom. The
support of e; and e;, i # 1, is disjoint since they are orthogonal. Hence x and e;
are orthogonal, so xze; = 0. Now write z as a linear combination > jes €5 of the e;.
Since 0 = ze; = Zjek, eje; only if ¢ is not in J, the above argument implies z = 0
or x = e1. The former is not possible, since = is not zero. Hence we get = = e,
and e; is an atom. O

3. ALL ABOUT PROFINITE SPACES
In this section we collect the results we need about profinite topological spaces.

Definition 3.1. We say that a topological space is profinite if it is the projective
limit of discrete, finite topological spaces. Recall that a topological space X is
totally disconnected if for every point x,y € X the connected component of x in X
is x itself.

Every totally separated topological space is totally disconnected, but the con-
verse is not true: there are totally disconnected topological spaces which are not
Hausdorff, while every totally separated topological space is Hausdorff. However,
the following is true:

Theorem 3.2. Let X be a topological space. Then the following are equivalent:
(i) X is profinite.
(i) X is homeomorphic to a closed subspace of a product of discrete, finite
topological spaces.
(#ii) X is compact, totally disconnected and Hausdorf(f.
(iv) X is compact and totally separated.

Proof. First assume that X satisfies (¢). Let C be a small category of discrete,
finite topological spaces whose projective limit is X. Let Ob(C) denote the set of its
objects, and let Hom¢ (A, B) denote the set of its morphisms for every A, B € Ob(C).
By definition, X is homeomorphic to the closed subspace

[T zce C| f(xa) =z (VA,Be Ob(C), Vf € Home(A, B))
CeOb(C) CeOb(C)
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of [ ceon(e) € so X satisfies (id).

Next assume that X satisfies (i7). Since finite topological spaces are compact,
their direct product is also compact by Tychonoff’s theorem. Since X is a closed
subspace of a compact space, it is compact, too. Moreover, the direct product of
totally disconnected and Hausdorff topological spaces is totally disconnected and
Hausdorff topological spaces. Since discrete topological spaces are totally discon-
nected and Hausdorff, and every subspace of a totally disconnected and Hausdorff
topological space is also totally disconnected and Hausdorff, we get that the same
holds for X, too. Therefore X satisfies (ii7).

Now we show that (i) implies (iv). We will start with the following standard

Lemma 3.3. Assume that X is a Hausdorff compact topological space. Let C, D c
X be two disjoint closed subsets. Then there exist disjoint open sets U < X con-
taining C and V < X containing D.

Proof. First assume that C consists of a single point € X. Because X is Hausdorff
for every y € D, there are disjoint open sets U, — X containing x and V,
X containing y. Because D is closed, it is compact, so there is a finite subset
Y1,---,Yn € D such that V,,,...,V, cover D. Then U = Uy, n---nU,, and
V=V, u---uV, aredisjoint open subsets containing x and D, respectively.
Now consider the general case. By the above for every x € C' there are disjoint
open sets U, ¢ X containing x and V,, € X containing D. Because C' is closed, it

is compact, so there is a finite subset x1,...,z, € C such that U,,,...,Us;, cover
C. ThenU =Ugy, v---ulU;, and V =V, n---nV, are disjoint open subsets
containing C' and D, respectively. ]

For every = € X, let Z(z) denote the set of all open and closed subsets of X
containing x, and let Z, denote the intersection of all elements of Z(x). We need to
show that if y € X is distinct from x then y ¢ Z,. Assume that this is not the case
for some y. Then Z, contains at least two points, so it is not connected, since X is
totally disconnected. Therefore Z, is the disjoint union of two non-empty subsets
C,D c Z, which are closed in Z,.

Since Z, is the intersection of closed subsets, it is closed in X. Therefore C
and D are also closed in X. Hence by Lemma there exist disjoint open sets
U c X containing C and V < X containing D. Let E be the complement of
the union of U and V in X. It is closed, so it is compact since X is Hausdorff.
Since U u V' contains Z,, the set E is covered by the union of the complements
of elements of Z(x). Since E is compact, it is already covered by the union of
finitely many such sets. Therefore there is a finite subset Z1,...,Z, € Z(x) such
that Z=Z1n---nZ,cUUV.

Note that since each Z; is both open and closed, the same also holds for the
finite intersection Z. Since each each Z; contains x, the set Z also contains x. Both
Z nU and Z n'V are open in Z, and the latter is open, so Z nU and Z n V are
open in X, too. The complement of Z is open, so both Z n U and Z nV are the
complement of the union of two open sets, so they are closed, too.

One of ZnU and Z NV contain z, say Z nU. Then Z nU € Z(x) which means
that Z n U contains Z,. Bt ZnUnZ, =Zn(UnZ,)=ZnC =C,whichis a
contradiction, since the complement of C' in Z, is D, and the latter is non-empty.
So condition (¢4¢) implies condition (iv).

Finally we show that (iv) implies (). We start with the following
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Notation 3.4. For every positive integer n € N let n denote the set {1,2,...,n}
equipped with the discrete topology. Now let X be an arbitrary topological space,
and let C(X) denote the small category whose objects are continuous maps f: X —
n for some n € N, and the morphisms from an object f: X — n to another object
g: X — m is an automatically continuous map h: n — m such that g = ho f.

Definition 3.5. The profinite completion of X is the projective limit X of the
small category C(X). It is equipped with a continuous map ux: X — X satisfying
the following universal property:
(i) X is profinite.
(ii) For every continuous map f: X — Y, where Y is a discrete, finite topologi-
cal space, there is a unique continuous map f : X — Y such that f= f oux.

This is because every discrete, finite topological space is homeomorphic to n for
some n € N. Moreover X is determined up to a unique homeomorphism by this
universal property by the classical abstract non-sense argument.

It will be sufficient to show that ux is a homeomorphism when X is compact
and totally separated. Since X is compact and X is Hausdorff by the above, it will
be sufficient to show that ux is a bijection. Let x,y € X be two different points.
Since X is totally separated, there is a continuous function f: X — 2 such that

~

f(z) # f(y) as we saw in the proof of Theorem Then f(ux(x)) = f(z) #

‘~

f(y) = flux(y)), so ux(z) # ux(y). Therefore ux is injective. In order to see
that ux is also surjective, we will need the following

Lemma 3.6. Let X be a compact and totally separated space, and let Cy,...,C,
X be pairwise disjoint closed subsets. Then there exist pairwise disjoint open and
closed subsets Uy,Us, ..., U, < X such that U; contains C; for each i, and u;U; =
X.

Proof. Note that it is enough to show the claim when n = 2 as the general case
follows by induction. Indeed let n > 2 be such that we already know the claim
for every m < m. Apply the m = 2 case to the closed subsets D; = C7 and
Dy = Cy v --- U (), to get two disjoint open and closed subsets Wi, Wy < X
such that D; € Wy, Do € Wy, and Wy u Wy = X. Then apply the m =n —1 to
Cy,...,C, inside W5, which is possible since W5 is closed in X, so it is compact and
totally separated. Therefore there exist pairwise disjoint open and closed subsets
Vo, ..., V, € Wy such that V; contains C; for each ¢ > 2, and u;V; = Ws. Since each
V; is open and closed in an open and closed subset of X, it is also open and closed
in W5. Therefore U; = W7 and U; = V; for i > 2 have the required properties.
Now consider the n = 2 case. By Lemma [3.3] there exist disjoint open sets
V1 < X containing C; and V5 < X containing Cs. Because X is totally separated,
its open and closed sets form a subbasis for its topology, so for every x € C; there is
a closed and open subset V,, © V; containing x. Because C] is closed, it is compact,
so there is a finite subset x1,...,2z, € C such that V,,,...,V,, cover C. Their
union Uy = V,, u--- UV, is the union of open and closed subsets, so it is also
open and closed, and it is contained in V;. Its complement U is also open and
closed and contains Cs, so U; and Uy have the required properties. (]

Now assume that ux is not surjective, so there is an = € X such that x ¢ ux(X).
Since X is compact and X is Hausdorff by the above the image ux (X) is closed in
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X. So by Lemma and since X is compact and totally separated by the above,
there are disjoint open and closed subsets Uy, U C X such that ux (X) € Uy and
x e U Let f: X - Fy the characteristic function of Uy. It is continuous, since
Uy is open and closed. Let g : g F5 be the identically 1 function; it is also
continuous, and foux = goux. However f # g, as f(z) # g(z), which violates
the universal property. This is a contradiction, so (iv) implies (). O

Notation 3.7. Let X be again an arbitrary topological space, and let 8: X —
Spec(B(X)) be the map introduced in Definition By Proposition the space
Spec(B(X)) is compact and totally separated, so it is profinite by Theorem[3.2] So
it is a projective limit of finite, discrete spaces, and hence by the universal property
of the profinite completion there is a unique continuous map 3: X — Spec(B(X))
such that 8 = Boux.

Theorem 3.8. The map B: X - Spec(B(X)) is a homeomorphism.

Proof. According to the universal property of the profinite completion it will be
sufficient to show that for every continuous map f: X — Y, where Y is a discrete,
finite topological space, there is a unique continuous map f: Spec(B(X)) — Y
such that f = fo B. For every continuous map m: T — @ of topological maps let
m*: B(Q) — B(T) denote the induced ring homomorphism. Since §*: B(X) —
B(Spec(B(X)) is an isomorphism there is a unique ring homomorphism r: B(Y) —
B(Spec(B(X)) such that 8*or = f*. By Theorem 2.10|there is a unique continuous
map f: Spec(B(X)) — Y such that r = f*. Then f* = 8*o f* = (foB)*, so it will
be sufficient to show that every continuous map h: X — Y is uniquely determined
by h*. Since for every x € X the point h(x) is uniquely determined by the ideal

{aeB(Y) [ a(h(z)) = 0} = {a e B(Y) | h*(a)(x) = 0},

this claim is clear. O

4. PROFINITE PRINCIPAL (G-BUNDLES

The purpose of this section is to prove Theorem [£.7 on the existence of sections
for profinite principal G-bundles.

Definition 4.1. Let A be a topological space and let m: A — B be a map. The
quotient topology on B with respect to m is defined the following way: a subset
U < B is open if and only if m~1(U) < A is open. Now let A be a topological
space equipped with a left action of a group H. Let H\A denote the quotient of A
with respect to the left action of H equipped with the quotient topology.

Lemma 4.2. The following hold:

(a) Let A be a topological space and let m: A — B be a map. Let B be equipped
with the quotient topology with respect to m. Then a map h: B — C' of
topological spaces is continuous if and only if the composition h o m is
continuous.

(b) Let A be a topological space equipped with a left action of a group H. Then
the quotient map A — H\A is open, that is, it maps open sets to open sets.

(¢) Let A, B be two topological spaces both equipped with a left action of a group
H. Then the product topology on H\A x H\B is the quotient topology with
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respect to the quotient map
Ax B—> (H x H\(Ax B) = H\A x H\B.

Proof. We first prove (a). Since the composition of continuous functions is con-
tinuous, the map h o m is continuous if h and m are. However, m is continu-
ous by construction, so h o m is continuous if A is. On the other hand, if h om
is continuous and U < C is open, then (h om)~'(U) € A is open. Therefore
m~Y(h=Y(U)) = (hom)~(U) is also open, so by definition h=1(U) < B is open.
Hence h is continuous, and now claim (a) is clear.

Next we show (b). Let U € A be open, and let ¢: A — H\A denote the quotient
map. Then ¢=1(q(U)) = U,em YU Since each v € H acts as a homeomorphism on
A we get that yU is open. Therefore their union ¢~*(q(U)) is also open, and hence
q(U) is open by the definition of the quotient topology. Claim (b) is now clear.

Finally, we show that (c) holds. let ga: A — H\A and ¢g: B — H\B be the
respective quotient maps. Since the map

qAXqBZAXB—>H\A><H\B

is continuous with respect to the product topologies, the pre-image of any open
subset is open. Therefore we only need to show that if (g4 x qg)~*(U) € A x B
for a subset U = H\A x H\B is open, then U is open in the product topology. In
this case, (g4 x ¢g) ' (U) is the union of sets of the form V x W, where V < A
and W < B are open. By part (b) the set (qga x gg)(V x W) = qa(V) x gg(W) is
open in the product topology. Since U is the union of such subsets, it is open, and
(¢) follows. O

Lemma 4.3. Let X be a profinite space and let U be an open covering of X. Then
there is a finite open covering V of X consisting of pairwise disjoint open and closed
subsets which is subordinate to U.

Proof. Because X is profinite, its open and closed subsets form a subbasis of its
topology. Therefore there is an open covering W of X consisting of open and closed
subsets which is subordinate to /. Since X is compact, we may assume without
the loss of generality that W is finite. Let R be the subring of B(X) generated by
the characteristic functions of the elements of /. Since R is finitely generated, it is
finite by Corollary

Let V be the collection of the characteristic functions of the atoms of R. We
claim that V satisfies the required properties. Because R is finite, the set V is also
finite. Since different atoms of R are orthogonal by part (ii¢) of Lemma their
support is pair-wise disjoint by part (i) of Lemma Let e1,eq,...,e, be the
atoms of R. Then 1 =e; + ... + e,, so the union of their supports is X. Also the
elements of V are open, since they are the supports of elements of B(X).

Now let e be an atom of R and pick an « in its support V. Since U is a covering,
there is a U € U such that x € U. The characteristic function f of U is in R, so it is
the sum of different atoms of R. Therefore, ef is either 0 or e by the orthogonality
of atoms. In the first case, the intersection of the supports U and V is empty, but
both contain z, a contradiction. Hence ef = e, so U contains V', and hence V is
subordinate to U. (]

Recall that a section of a continuous map of topological spaces f: Y — X is a
continuous map s: X — Y such that f o g is the identity map of X.
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Proposition 4.4. Let f: Y — X be a continuous map such that X is profinite and
every v € X has an open neighbourhood U such that f|s—1(yy: f~YU) - U has a
section. Then f:Y — X has a section.

Proof. By assumption there is an open cover ¢ of X such that for every x € X
there is a U € U such that f|s—1y: f~Y(U) — U has a section. By Lemma
there is a finite open covering V of X consisting of pairwise disjoint open and closed
subsets which is subordinate to Y. Let V € V and pick a U € U which contains V.
By assumption there is a section of f|;—1ny: f~1(U) — U; its restriction to V' is
a section sy : V — f71(V) of flp-1vy: f7H(V) — V. Since the elements of V of
X form an open and pairwise disjoint covering of X, the union [ Jy.,, sv of these
sections is a section of f: Y — X. ([

Proposition 4.5. Let G be a compact group, and let X be a profinite space equipped
with a free continuous group action g: G x X — X. Then both G and G\X are
profinite.

Proof. For the sake of simple notation, in the sequel we will denote any left action
of any group on any set by multiplication on the left, if this does not lead to
confusion. Since the action g is continuous and free, for every x € X the map
~ — vz from G onto the G-orbit of z is continuous and injective. As G is compact
and X is Hausdorff, we get that the image of this map is closed, and the map itself
is a homeomorphism from G onto its image. As G is homeomorphic to a closed
subspace of a profinite space, it is also profinite by Theorem [3.2

Let g: X — G\X denote the quotient map. Since ¢ is surjective, continuous, and
X is compact, we get that G\X is compact, too. Let x,y € G\X be two arbitrary
different points. The pre-images C' = ¢~ 1(x) and D = ¢ !(y) are disjoint G-orbits,
and they are also closed by the above. Therefore by Lemma [3.6] there exist disjoint
open and closed subsets U,V < X such that U contains C' and V' contains D.

Set U’ = UWGG ~U. Since each v € G acts as a homeomorphism, we get that
U’ is the union of open subsets, so it is open. It is also the continuous image of
G x U. Both G, U are compact since the latter is closed in a profinite space. Hence
their product G x U is also compact. Thus, U’ is closed, since Y is Hausdorff.
Also U’ n D is empty; if it were not then vU n D # ¢ for some v € G, but then
UnD=~"1Un D) # & using that D is G-invariant. This is a contradiction.
A similar argument shows that V'’ = UWGN ~U is open and closed, and V' n C'is
empty.

Therefore W = U’ n V' is open and closed, and W is disjoint from C u D.
Therefore its complement U” = U’ — W in U’ is also open and closed, and contains
C since U’ does. Similarly V” = V' — W is also open and closed, and contains D.
Moreover, both U’ and V'’ are G-invariant, so the same holds for W, and hence for
U” and V”. Because these sets are disjoint, their images ¢(U") and ¢(V") are also
disjoint. They are also open by part (b) of Lemma and since z,y are in ¢(U”")
and q(V"), respectively, and were arbitrary, we get that G\ X is at least Hausdorff.

Going back to the situation above, since U” and V" are closed in a profinite space,
they are compact. Hence their images ¢(U”) and ¢(V") are closed, since G\X is
Hausdorff. Therefore they are a pair of disjoint open and closed neighbourhoods of
x and y; since the latter were arbitrary, we get that G\ X is even totally separated,
S0 it is profinite by Theorem O
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Definition 4.6. Let X be a topological space and let G be a compact group. A
profinite principal G-bundle over X is a continuous map f:Y — X equipped with
a free continuous group action g: G x Y — Y such that Y is profinite, the map f
is surjective and the pre-image of each x € X is a G-orbit.

Theorem 4.7. Let X be a Hausdorff space and let G be a compact group. Then
every profinite principal G-bundle over X has a section.

Remarks 4.8. (i) In the situation of the theorem above both G and X are profinite.
This is immediate for G from Proposition Moreover there is a unique bijection
t: G\Y — X such that f = togq, where ¢: Y — G\Y denotes the quotient map.
Since f is continuous, we get that ¢ is a continuous bijection by part (a) of Lemma
Since G\Y is compact by Proposition and X is Hausdorff, we get that ¢ is
a homeomorphism. Moreover G\Y is actually profinite by Proposition so the
same holds for X, too.

(#4) The reader might wonder if it is true that for every continuous, surjective
map f: X — Y of profinite spaces have a section. It turns out that those Y which
have this property for every such f have a name: extremally disconnected spaces.
They can be characterised by the following property: every set of open and closed
subsets of Y has a supremum with respect to inclusion (see the Folk Theorem of
[3] on page 485). Some spaces, such as the Cech-Stone compactification of discrete
spaces have this property, but there are many profinite spaces which do not.

(#41) The theorem above was already stated by Morel, see the remark after
Lemma 4 of [7] on page 359. However, no proof was given, just a remark that
the strategy of the proof of Proposition 1 of [12] on page 4 works. This is what we
will do, but for the sake of the reader we will give a detailed argument.

Proof of Theorem[{.7. We start with the proof of the following significant special
case:

Proposition 4.9. The theorem holds when G is finite.

Proof. By Proposition [4.4]it will be sufficient to show that every x € X has an open
neighbourhood U such that f|s-1: f~'(U) — U has a section. Since f~!(z) is
homeomorphic to G, it is non-empty, so there is a y € Y such that f(y) = =z.
Because G is finite, and every point of Y is closed, as Y is Hausdorff by Theorem
there exist pairwise disjoint open and closed subsets U, < X for all v € G such
that U, contains ~yy for each v by Lemma

Set V = ﬂveg v~ U,. It is the intersection of finitely many open and closed
subsets, so it is also open and closed. For every v € G we have vV < 'y(y_lUv) =
U,,s0 V.nyV = ¢ for every v # 1 in G. Therefore the restriction of f to V is
injective. Since V is closed, it is compact, while its image f(V') is Hausdorff, so
flv has a continuous inverse f(V) — V. Since y = v~ !(yy) € v U,, we get that
y €~ 'U, for every v € G, so y € V, and hence z € f(V).

Therefore it will be sufficient to show that f(V') is open in X. Set Z = (J, .7V
it is clearly G-invariant, and since it is the union of open subsets, it is also open.
Therefore its complement W =Y — Z in Y is G-invariant and closed. Moreover
f(V) = f(Z2), as f is G-equivariant, and f is surjective, so the complement of f(V)
in X is f(W). Since W is closed, it is compact, and X is Hausdorff, so f(W) is
closed. Therefore its complement f(V') is open. O
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Definition 4.10. Let N be a closed, normal subgroup of G and let Gy = N\G
denote the quotient: it is a profinite group. Let ry: G — Gy be the quotient map,
which is a continuous group homomorphism. There is a unique map fy: N\Y — X
such that f: Y — X is the composition of the quotient map ¢y : Y — N\Y and fy.
There is a unique group action G x N\Y — N\Y which makes fx a G-equivariant
map. The restriction of this action onto NV is trivial, so it induces a group action
gnN: GN X N\Y - N\Y

Proposition 4.11. The map fn: N\Y — X equipped with the group action gy : Gy %
N\Y — N\Y is a profinite principal G n-bundle over X.

Proof. Since the composition f = fy o gy is continuous, we get that the map fn
is continuous by part (a) of Lemma By part (c¢) of Lemma the topology on
Gy x N\Y is the quotient topology with respect to ry X gy, so gy is continuous
if gy o (rn x qn) is by part (a) of Lemma However, the composition gy o g is
continuous, so by the commutativity of the following diagram:

Gxy —2 Y

TNXQN\L i(IN

Gy x N\Y £~ N\Y

the group action gy is continuous. Clearly the action gy is free, the map fy is
surjective, and the pre-image of each x € X is a Gy-orbit. Finally, N\Y is profinite
by Proposition since the action of NV on Y is free and N is compact. [

Definition 4.12. Let M, N be a pair of closed, normal subgroups of G such that
M < N. There is a unique map far,n: M\Y — N\Y such that gn: Y — N\Y is
the composition of the quotient map gpr: Y — M\Y and fyrn. Let S denote the
set whose elements are ordered pairs (N, s), where N is a closed, normal subgroup
of G and s is a section of fx: N\Y — X. Let > denote the binary relation on S
such that (M,r) = (N,s) if and only if M € N, and fa,n o7 = s. Since for every
triple L € M < N of closed, normal subgroups of G' we have fiar,n o fr.amr = fr.n,
we get that > is a partial ordering on S.

Proposition 4.13. The poset S has a mazximal element.

Proof. For N = G the map fy is a bijection from a compact space onto a Hausdorff
topological space, so it is a homeomorphism. Therefore its inverse is a section, and
hence S is not empty. So by Zorn’s lemma we only need to show that every chain
C < S has a maximal element. Set C' = ﬂ(N,s)EC Nj; since it is the intersection of
closed, normal subgroups, it is also a closed, normal subgroup of G.

For every (N, s) € C, let I'(N, s) € C\Y denote fa%v(s(X)), the pre-image of the
section s: X — N\Y with respect to fo,n: C\Y — N\Y. Since X is compact and
N\Y is Hausdorff the image s(X) is closed; as fc n is continuous the pre-image
(N, s) is also closed. Therefore their intersection I' € C\Y is closed, and hence
compact. So it will be sufficient to show that the restriction fo|r: I' — X, which
is continuous, is also bijective, as X is Hausdorff.

Fix an € X; then for every (N, s) € C the intersection I'(N, s) N f5 ' (z) is a non-
empty closed subset, and these form a descending chain with respect to inclusion.
Hence by the compactness of C\Y their intersection T' n f5'(z) is non-empty.
Therefore fo|r: I' — X is surjective. Now assume that we have two different
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y,zel'n fal(:c); then there is a unique 1 # v € C\G such that z = vy. Since C is
the intersection ﬂ(N,s)eC N, there is an (N, s) € C such that the image of v under
the quotient homomorphism C\G — N\G is not 1. Then the images fc v (y) and
fe.n(vy) are still different, since fo ny is G-equivariant. However, both fo n(y) and
fo.n(yy) lie in the intersection of s(X) and fy'(x), which consists of the single
point s(z): a contradiction. Therefore fo|r: I' — X is injective, too. O

Now let (N, s) be a maximal element of S. If we have N = {1}, then the theorem
holds. So let us assume that this is not the case, and pick a non-zero v € N. Then
there is an open normal subgroup P < G such that v ¢ P. Let M = N n P. Since
M is the intersection of closed normal subgroups, as every open subgroup is closed
in a profinite group, it is such a group, and I' = M\N is finite. Let A € M\Y
denote f];[}N(s(X)), the pre-image of the section s: X — N\Y with respect to
fun: M\Y — N\Y. The action gy restricted to I' leaves A invariant.

Lemma 4.14. The restriction fayla: A — X equipped with the group action
gmlrxa : T'x A — A is a profinite principal T-bundle over X.

Proof. Since fpr|a is the restriction of a continuous map, it is continuous, and for
similar reasons gnr|rxa is continuous and T'-equivariant, too. Since X is compact
and N\Y is Hausdorff the image s(X) is closed; as fas,n is continuous the pre-image
A is also closed. Therefore it is a profinite space, as M\Y is profinite. Finally, for
every x € X the fibre fM|Zl(x) is bijective I-equivariantly to I. O

By Lemma 4.14] and Proposition there is a section r: X — A. Let r also
denote the composition of this map with the inclusion map A — M\Y by slight
abuse of notation. Then (M, r) € § such that (M,r) = (N, s), but (M,r) # (N, s).
This contradicts the maximality of (IV,s), so N = {1}. This completes the proof of
Theorem 17 O

5. MAXIMAL PRO-2 QUOTIENTS OF REAL PROJECTIVE GROUPS

The goal of this section is to prove Theorem We first introduce the following
type of embedding problems:

Definition 5.1. Let G be a profinite group. An embedding problem for G:

G
=~ i¢
2

is a 2-embedding problem if both A and B are 2-groups.

Proposition 5.2. Let G be a pro-2 group such that every real 2-embedding problem
over G has a solution. Then every real embedding problem over G has a solution,
too.

Proof. We need the following group-theoretical

Lemma 5.3. Let f: C' — D be a surjective homomorphism of finite groups such
that D is a 2-group. Let P < C be a 2-Sylow subgroup and let x € C' be a 2-torsion
element. Then

(i) The restriction f|p: P — D is surjective.



QUASI-BOOLEAN GROUPS 17

(ii) There is an h € C such that h= zh € P and f(x) = f(h~'zh).
Proof. Let 2° denote the order of D. Let N be the kernel of f and write the order
of N as 2% where r is not divisible by 2. Then the order of C is 2¢*r, so the
order of P is 2¢*? while the order of P n N is at most 2%. Since the kernel of
the restriction f|p: P — H is P n N, we get that the image of f|p is at least 2°.
Therefore f|p is surjective.

Since the order of the subgroup generated by g divides 2 there is a t € C' such
that t~1gt € P by the second Sylow theorem. By the above there is a v € P such
that f(v) = f(t). Set h = tv~!. Then

hlgh = v(t gt)v~t e vPv™! = P,
since v~! € P. Moreover

F(hrgh) = f() FO) " (@) FO) f(0)™F = flg)
using that f is a homomorphism and f(v) = f(t). O

Let
G

? i¢>
L

be a real embedding problem E for G. Let H € A be the image of ¢. Since G is
a pro-2 group, H is a 2-group. Let C' € B be the pre-image of H with respect to

a and let P < C be a 2-Sylow subgroup. By part (i) of Lemma the restriction
alp is surjective. Clearly,

0 l¢
£
P S
alp

is a 2-embedding problem F for G such that if it has a solution then E also has a
solution. Therefore it will be enough show that F is real because of our assumptions
on G. Let « € G be an involution; by assumption there is a 2-torsion element g € C'
such that a(g) = ¢(x). Then there is a y € P which is conjugate to g in C' such
that a(y) = ¢(x) by part (i4) of Lemma Since y is conjugate to a 2-torsion
element, it is also 2-torsion. So F is real. ([

Theorem 5.4. Let G be a pro-2 group. Then the following are equivalent:
(1) G is real projective.

(i) G is isomorphic to the mazimal pro-2 quotient of a real projective group.
Proof. Since the maximal pro-2 quotient of a pro-2 group is the group itself, clearly
() implies (i7). Now let G be a pro-2 group which satisfies (7). We start the proof
of the other implication by showing that every real embedding problem for G has a
solution. By Proposition [5.2] we need to show that any real 2-embedding problem
E:

G

2
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has a solution. Now let K be a pseudo real closed field such that G is isomorphic
to the maximal pro-2 quotient of the absolute Galois group I' of K. Such a field
exists by the work of Haran—Jarden in [5, 6]. Let ¢: I' — G be the corresponding
quotient homomorphism. We claim that

r

¢ i¢0q
P

is a real embedding problem F. Indeed, let z € I" be an involution such that ¢og(z)
is also an involution. Then ¢(x) € G is also an involution, so there is an involution
g € B such that a(g) = ¢(q(z)) = ¢ o g(x). So F is real. Since T is real projective,
the embedding problem F has a solution 5: I' - B. But B is a 2-group, so 5 is
the composition of ¢ and a continuous homomorphism G — B. The latter is a
solution to E. To finish the proof of Theorem we need the following notation
and lemma.

Notation 5.5. For every profinite group G, let G2 denote its maximal pro-2 quo-
tient and let t: G — G2 denote the quotient map. This assignment is functorial,
that is, for every homomorphism h: G — H of profinite groups there is a unique
homomorphism hs: Gy — Hs such that the diagram:

G- mg

G2 e H2
ha

is commutative.

Lemma 5.6. Let G be a profinite group, let H € G2 be an open subgroup, let I be
the pre-image tal (H) € G, and let h: I — H denote the restriction of tg onto I.
Then hy: Iy — Hy = H is an isomorphism.

Proof. Because h is surjective, the map hsy is also surjective, so we only need to
show that it is injective, too. Let 1 # ~ € Is be arbitrary. Then there is an open,
normal subgroup U € I3 such that v ¢ U. Since t; is continuous, the pre-image
t;l(U) is an open subgroup of 2-power index in I. Since [ is an open subgroup of
2-power index in G, we get that t;l(U ) is an open subgroup of 2-power index in G,
too. Set N = (Nsoq 0 't; 1 (U)3; clearly it is a normal subgroup. Since §~1¢;'(U)§
only depends on the coset t;l(U )9, of which there are only finitely many, we get
that IV is a finite intersection of open subgroups of 2-power index in G, so it is also
an open subgroup of 2-power index in G. Therefore the subgroup ¢;(N) € I is the
pre-image of tg(N) € Ga, but clearly v ¢ t;(N), and hence ha(y) # 1. O

Now we return to the proof of Theorem By Definition it remains to
show that G = T'y contains an open subgroup without 2-torsion. Let K be the
field introduced above, and let A < T' be the open subgroup corresponding to
the finite extension K(y/—1)/K. As A is isomorphic to the absolute Galois group
of K(+/—1), it has cohomological dimension at most 1. By the Rost—Voevodsky
norm residue theorem [I4] (formerly known as the Milnor conjecture), the pull-back
map H*(As,Z/2) - H*(A,Z/2) induced by the quotient map tao: A — Ag is an



QUASI-BOOLEAN GROUPS 19

isomorphism. Therefore, Ay also has cohomological dimension at most 1. Hence,
by [12, Proposition 14 on page 19], any closed subgroup of Ay has cohomological
dimension at most 1. Since a finite subgroup would have infinite cohomological
dimension, A, is torsion-free. Moreover, A has index dividing two in I'; so Ay is
isomorphic to the kernel of the homomorphism I'y — Z/2Z corresponding to the
homomorphism I' — Gal(K (v/—1)/K) € Z/2Z by Lemma Therefore, Ay is an
open, torsion-free subgroup of I'y. This finishes the proof of Theorem [5.4] ([

6. PRO-2 REAL PROJECTIVE GROUPS VERSUS QUASI-BOOLEAN GROUPS

The goal of this section is to prove Theorems and We begin with the
following recollection and notation.

Remark 6.1. The free product of pro-p groups G1 and G5 is the coproduct of G and
G5 in the category of pro-p groups, that is, it has the following universal property.
For j = 1,2, let ¢;: G; — Gy *, G2 be the composition of the natural inclusion
G; — G1 * G and the quotient homomorphism Gy * G2 — G #, G2. Then for
every pro-2 group G and for every pair of homomorphisms f;: G; — G of pro-2
groups, there is a unique homomorphism f; #, fo: G1 *, G2 — G of pro-2 groups
such that (fy %, f2) ov; = f; for j = 1,2. This follows obviously from the definition
when G is finite, and the general case follows by taking the projective limit.

Definition 6.2. Let G be a profinite group. Let ),(G) denote the subset of
elements of order dividing p in G. We equip Y,(G) with the subset topology. Let
X, (G) denote the quotient of V,,(G) by the conjugation action of G. We equip X,(G)
with the quotient topology. Let }5(G) denote the complement of 1in Y, (G), and let
X (G) denote the complement of the conjugacy class of 1 in &), (G). When p = 2 we
let Y(G), X(G),V*(G), X*(G) denote V,(G), Xp(G), Vi (G), Xy (G), respectively.

Remark 6.3. Let X be a topological space. Recall from Definition [I.4] the free
pro-2 power B(X). We note that B(X) has the following universal property: Let
tx: X — B(X) be the composition of the natural inclusion X — kx Z/27Z and
the quotient homomorphism s x Z/2Z — B(X). Then, for every pro-2 group G
and for every continuous map f: X — Y(G), there is a unique homomorphism
by: B(X) — G of pro-2 groups such that by ovx = f. This follows obviously from
the definition when G is finite, and the general case follows by taking the projective
limit.

Notation 6.4. Let f: X — Y be a continuous map of topological spaces. Since
iy: Y — B(Y) is continuous and its image lies in Y(B(Y")), by the universal prop-
erty in the remark above there is a unique homomorphism B(f): B(X) — B(Y) of
pro-2 groups such that B(f) o tx = ty o f. This makes the assignment X — B(X)
into a functor.

~

Proposition 6.5. For every topological space X, the map B(ux): B(X) — B(X)
induced by the profinite completion ux : X — X is an isomorphism of pro-2 groups.

Proof. First we are going to show that B(ux) is surjective. Since the image is
compact, it is closed, so it will be sufficient to show that the image is dense. In
order to do so it will be enough to prove that, for every 2-group G and continuous

surjective homomorphism f: B(X) — G, the composition f o B(ux) is surjective.
Note that X generates ¢ Z/2Z, so f(X) generates G. Since ux(X) is dense in



20 AMBRUS PAL AND GEREON QUICK

X, the image foux (X) is dense in f()A() But G is finite, so it is discrete, and
hence f o ux(X) is equal to f(X). So f o ux(X) generates G, therefore f o B(ux)
is surjective.

Next we are going to show that B(ux) is injective. In order to do so it will be
sufficient to show that ux otx: X — IB%()Z' ) has the universal property in Remark
Indeed then there is a continuous homomorphism f: IB%()A( ) — B(X) such that
foB(ux)oix is tx, and hence f oB(ux) is the identity of B(X). Now let G be
a pro-2 group and f: X — Y(G) be a continuous map. Since Y(G) is profinite,
there is a unique continuous map g: X - Y(G) such that f = g o ux because of
the universal property of uyx. Using the universal property of IB%()A( ) we get that
there is a continuous homomorphism by : IB%()A( ) — G of pro-2 groups such that
bfoig =g. ]

We recall from Definition[I.5|that we call a pro-2 group Boolean if it is isomorphic
to B(X) for some topological space X. By Proposition we can always assume
that X is profinite. We call a pro-2 group quasi-Boolean if it is the free product of
a free pro-2 group and a Boolean group.

Theorem 6.6. Fvery quasi-Boolean pro-2 group is real projective.

Proof. Let G be a quasi-Boolean pro-2 group. It will be sufficient to show that G
is the maximal pro-2 quotient of a real projective group by Theorem In order
to do so, we will use a group-theoretical characterisation of real projective groups
by Haran and Jarden. Following [6, Definition 1.1 on page 156] we define:

Definition 6.7. A profinite group D is said to be real free if it contains disjoint
closed subsets X and Y such that X € Y*(D), 1 € Y, and every continuous map
¢ from X UY into a profinite group H such that ¢(x)? = 1 for every x € X and
(1) = 1 extends to a unique homomorphism of D into H.

Theorem 6.8 (Haran—Jarden). A profinite group G is real projective if and only
if G is isomorphic to a closed subgroup of a real free group.

Proof. This claim is [0, Theorem 3.6 on page 160]. O

Now we return to the proof of Theorem For every set Y, let F/(Y') denote the
free pro-2 group on Y as defined in [12] Section 1.5 on pages 7-8|. By assumption,
G is the free product of a free pro-2 group F(Y) and a Boolean group B(X) for a
set Y and a profinite space X. By Theorem [6.8] it will be sufficient to show that
G is the maximal pro-2 quotient of a real free profinite group. Let G be the free
product s x Z * sk x Z/2Z, i.e., the group which is freely generated by the elements
of the disjoint union of Y and X, subject to the relation that these elements are
involutions. Let N be the family of normal subgroups N of G such that

(7) the quotient (A;/N is finite,
(#) the composition of the natural inclusion ¥ — G and the quotient homo-
morphism G— (A}'/N maps all but finitely many elements of Y to 1,

(797) the composition of the natural inclusion X — G and the quotient homo-

morphism G-a /N is continuous with respect to the discrete topology on

G/N.
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Set
G = lim G/N.
NeN

Clearly G is the maximal pro-2 quotient of G. On the other hand, G is a real free
profinite group. In fact, G is the group lA)(X, Y, ,e) in [6, Lemma 1.3 on pages 156—
157], where Y, is the one-point compactification of Y equipped with the discrete
topology, and e € Y, —Y is the point at infinity. This finishes the proof of Theorem
6.0 O

Next, we set out to prove the converse, i.e., every real projective pro-2 group is
quasi-Boolean. We begin with the following

Definition 6.9. Let A be an abelian profinite group. A complement of a closed
subgroup B < A is a closed subgroup C < A such that B n C is trivial, and
B+C=A.

The following lemma is probably very well-known, but we could not find a con-
venient reference:

Lemma 6.10. Let G be a p-torsion abelian profinite group. Then the following
holds:

(i) there is an isomorphism G =~ IF]),( for some set X,
(i7) every closed subgroup of G has a complement.

Proof. The Pontryagin dual of G is a discrete [Fp-linear vector space V, since G
is compact. Note that every isomorphism between discrete F,-linear vector spaces
is automatically a homeomorphism, so V is isomorphic to the direct sum IFZ@X ,
equipped with the discrete topology, as a topological group for some set X. The
Pontryagin dual of F$* is F,X, which is isomorphic to G by Pontryagin duality. So
claim (7) holds.

Assertion (i%) is equivalent to the following claim: let i: B — A be a monomor-
phism of p-torsion abelian profinite groups. Then there is a morphism j: A — B
such that j o7 = idg. By Pontryagin duality, it is equivalent to the following
claim: let p: V' — U be an epimorphism of F,-linear vector spaces. Then there is
a morphism r: U — V such that p or = idy . The latter is well-known. ([l

Again let G be a quasi-Boolean pro-2 group which is the free product of a free
pro-2 group F and a Boolean group B(X) for a profinite space X. Let jx: X —
X(B(X)) denote the composition of the map ix: X — Y(B(X)), the inclusion
Y(B(X)) € Y(G), and the quotient map Y(G) — X(G). It is useful to record the
following fact:

Theorem 6.11. The map jx is a homeomorphism onto X*(G).

Proof. Since X is compact and X*(G) is Hausdorff, it will be sufficient to show that
jx maps X onto X*(G) bijectively. Let z,y € X be two different elements. Then
there is a continuous map s: X — Z/2 such that s(z) # s(y). Let 5: G — Z/2
be the unique homomorphism such that the restriction of s onto F' is trivial, and
onto B(X) is b, (as defined in Remark [6.3). Under s the images of ix (z) and ix (y)
are not conjugate, so they are not conjugate in G either. Therefore jx is injective.
Since we may guarantee that s(z) is not a unit, we get that jx maps into X*(G),
too.
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Now assume that there is a y € X*(G) which is not in the image of jx. Since
X is compact and X*(G) is Hausdorff, the image of jx is closed, so by Lemma
there is a continuous function r: X*(G) — Z/2 such that r o jx is zero, and
r(y) is non-zero. By Theorem the pro-2 group G is real projective. Hence,
by Scheiderer’s theorem [8, Theorem 2.11], there is a continuous homomorphism
7: G — Z/2 whose image under the map

7 HY(G,Z/2) — C(X*(G),7/2)

is 7. Then the restriction of 7 onto ix (X) is zero, so by the universal property of
B(X) the restriction of 7 onto B(X) is also zero, and hence this homomorphism
factors through the surjective homomorphism p; : G — F supplied by the universal
property of free pro-2 products. But F is torsion-free (see [12] Corollary 3, part (a)
on page 31]), so p; is zero on any involution 7 in the conjugacy class y. Therefore
r(y) = T(y) is zero, which is a contradiction. O

Theorem 6.12. Let G be isomorphic to the absolute Galois group of a field K.
Then there is a continuous section s: X*(G) — Y*(G).

Proof. Let H < G be the open subgroup corresponding to the finite extension
K(v/—1)/K. Then H is isomorphic to the absolute Galois group of K (v/—1), and
it is torsion-free. In particular, if H = G then X*(G) is empty and the claim is
trivially true. Otherwise, H has index two in G. Then the theorem follows from
Proposition [6.13] below and Theorem [4.7] O

Proposition 6.13. With the above assumptions, the map Y*(G) — X*(G) is a
profinite principal H-bundle with respect to the conjugation action of H on Y*(G),
and X*(G) is Hausdorff.

Proof. Clearly Y(G) is closed in G. Since H is torsion-free, the subset Y*(G) is
the intersection of X'(G) and the complement of the open H in G, so it is closed,
too. Since G is profinite, we get that Y*(G) is profinite. As G is isomorphic to an
absolute Galois group, for every y € Y*(G) we have H n Cg(y) = {1}, and hence
H acts freely on Y*(G). This action is also clearly continuous.

We claim that every x € G conjugate to y is already conjugate under H. Indeed,
let z € G be such that z7'zz = y. Since H has index 2 and y ¢ H we have
G = Hu Hy. If z € H the claim is clearly true. Otherwise z = hy for some h € H,
and hence = zyz~' = hyyy 'h™' = hyh~!, so z is conjugate to y under H in
this case, too. So the map Y*(G) — X*(G) is the quotient map with respect to the
action of H. Since Y*(G) is open in Y(G) the subspace topology on X*(G) < X(G)
is the quotient topology with respect to the map in the claim. Therefore, X*(G)
is Hausdorff by Proposition O

Corollary 6.14. Let G be a real projective profinite group. Then there is a con-
tinuous section s: X*(G) — YV*(G).

Proof. Since every real projective profinite group is isomorphic to the absolute
Galois group of a pseudo real closed field, the claim follows at once from Theorem
612 ([

Remark 6.15. Note that Corollary is also part (a) of [0, Lemma 3.5 on page
160]. We think, however, that our proof is more conceptual and derives a similar
claim for a much larger class of groups.
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Notation 6.16. For every pro-2 group G, let Gy denote the mazimal abelian 2-
torsion quotient of G and, for every homomorphism b: G — H of pro-2 groups, let
by : Gy — H, denote the homomorphism induced by b.

Theorem 6.17. Let G be a real projective pro-2 group. Then G is quasi-Boolean.

Proof. Let X denote X*(G), and let s: X — Y*(G) be the section furnished by
Theorem Let B be the image of the homomorphism (bs)s: B(X)x — Gx.
Since B(X), is compact and G is Hausdorff, B is closed. Let A € G be a com-
plement of B, which exists by part (i7) of Lemma By part (2) of Lemma
there is a set Y such that A =~ Z/2Y. Since F(Z), = Z/2Y, by part (a) of [12]
Proposition 24 on page 30] and Pontryagin duality, there is a continuous homomor-
phism h: F(Y) — G such that hy: F(Y)s — G4 maps F(Y), isomorphically onto
A. We set P = F(Y) %2 B(X) and let a: P — G be the homomorphism h =g b.
Since (G1 *2 G2)x = (G1)x @ (G2)x for every pair of pro-2 groups G; and Ga, we
get that . : Py — Gy is an isomorphism. Hence, by [12] Proposition 24, part (b),
on page 30] and Pontryagin duality, the map « is surjective. To finish the proof we
need the following

Lemma 6.18. Let a: P — G be a continuous surjective homomorphism of real
projective profinite groups, and let X < Y*(P) be a system of representatives of
X*(P). If a maps X bijectively onto a system of representatives of X*(G), then
there is a continuous injective homomorphism ~v: G — P such that a oy = idg.

Proof. This claim is part (b) of [6 Lemma 3.5 on page 160]. The proof relies on
the projectivity of the Artin—Schreier structures attached to real projective groups
(see [Bl, Proposition 7.7 on page 473]). O

We return to the proof of Theorem [6.171 By Theorem the quasi-Boolean
group P is real projective, while by Theorem the subset X < P is a system
of representatives of X*(P) mapped bijectively onto a system of representatives of
X*(@), so the conditions in Lemmal[6.18 above hold. Therefore there is a continuous
homomorphism v: G — P such that a« oy = idg. Then ay oy, = (€ o7)y =
(idg)s = idg, is the identity, and o is an isomorphism, so 4 is an isomorphism,
too. Therefore, « is surjective by part (b) of [12, Proposition 24 on page 30] and
Pontryagin duality. So < is an isomorphism, and hence G is quasi-Boolean. This
finishes the proof of Theorem O

7. QUILLEN’S THEOREMS AND THEIR CONSEQUENCES
The goal of this section is to prove Corollary [7.23]

Definition 7.1. Following Quillen we say that a homomorphism R — S of graded
anti-commutative rings is finite if S is a finitely generated module over R. This
definition is a bit ambiguous since it does not specify whether we consider S as a
left R-module or a right R-module. However, note that S is a finitely generated
left R-module if and only if it is a finitely generated right R-module. Indeed if S is
a finitely generated left R-module then it is also generated by a finite set H < S of
homogeneous elements. But the left R-module generated by H is the same as the
right R-module generated by H since S is anti-commutative. Therefore S is also
finitely generated as a right R-module. The converse could be proved similarly.
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Theorem 7.2 (Quillen). Let G be a pro-p group and let H < G be a finite subgroup.
Then the homomorphism H*(G,Z/p) — H*(H,Z/p) is finite.

Proof. Note that H is a closed subgroup, as G is Hausdorff, so the homomorphism
H*(G,Z/p) — H*(H,Z/p) is well-defined. This theorem was proved by Quillen
when G is finite [I3] Corollary 2.4 on page 555, and the general case follows as
an easy corollary. Indeed let N <« G be an open normal subgroup such that the
restriction of the quotient map ¢: G — G/N to H is injective. Then the homomor-
phism H*(G/N,Z/p) — H*(H,Z/p) induced by the composition of the inclusion
map H — G and ¢ is finite by the above. Since this homomorphism factors through
H*(G,Z/p) — H*(H,Z/p), the latter is also finite. |

Corollary 7.3. Let G be a pro-p group and let H € G be a subgroup of order
p. Then the homomorphism H"(G,Z/p) — H"(H,Z/p) is non-zero for infinitely
many n.

Proof. Assume that the claim is false and there is a natural number d such that the
image of H"(G,Z/p) — H"(H,Z/p) is zero for n > d. Let S <« H*(H,Z/p) be a
finite subset of homogeneous elements which generate H*(H,Z/p) as a H*(G,Z/p)-
module. Let d’ be the maximal degree of the elements of S. Then H"(H,Z/p) =0
for every n > d + d’. But, since H has order p, H"(H,Z/p) # 0 for every n which
is a contradiction. ]

We now recall the following types of algebras from [§].

Definition 7.4. We call an Fy-algebra B* = @), B’ a graded Boolean algebra if
B% = TF, and there is a Boolean ring B such that, for every i > 1, we have B’ = B,
and, for every pair i, j > 1, the multiplication B’ x B? — B*tJ ig the multiplication
in the ring B = B* = B/ = B**J. We call an Fs-algebra D* = @i;o D' a dual
algebra if D° = Fy, and D* = 0 for i > 2. The connected sum D* r B* is the
graded Fy-algebra with (D* m B*)? = Fy, (D* 1 B*)! = D'® B* for i > 1 and
multiplication D'B? and B*D! is set to be zero for all i > 1.

Remark 7.5. In [8] we show that dual and graded Boolean algebras are Koszul
algebras. In particular, they are quadratic algebras and their connected sum is
their direct sum as quadratic algebras.

The results in [8] are the motivation for the following terminology which we recall
from the introduction.

Definition 7.6. We say that a pro-2 group is a cohomologically Boolean group if
its mod 2 cohomology is a graded Boolean algebra. We say that a pro-2 group is a
cohomologically quasi-Boolean group if its mod 2 cohomology is the connected sum
of a dual algebra and a graded Boolean algebra.

For every commutative ring R, let A/(R) denote the nilradical of R.

Lemma 7.7. Let G be a cohomologically quasi-Boolean pro-2 group. Then the
quotient H*(G,Z/2)/N(H*(G,Z/2)) is a graded Boolean algebra.

Proof. Let H*(G,Z/2) be the connected sum of a dual algebra D* and a graded
Boolean algebra B*. Then the nilradical of H*(G,Z/2) is D!, so the quotient
H*(G,Z/2)/N(H*(G,Z/2)) is isomorphic to B*. O
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Definition 7.8. Let G be a cohomologically quasi-Boolean pro-2 group. Let B
denote the up to isomorphism unique Boolean ring such that the associated graded
Boolean algebra B* is isomorphic to H*(G,Z/2)/N (H*(G,Z/2)). We say that a
continuous homomorphism k: G — Z/2 is a quasi-canonical homomorphism if the
image of the associated cohomology class k € H'(G,Z/2) under the quotient map

H*(G,Z2/2) — H*(G,Z/2)/N (H*(G,Z/2))
is the unit of B.

Remark 7.9. Quasi-canonical homomorphisms k € H*(G, Z/2) can be characterised
by the following property: for every n > 0 and c € H"(G,Z/2) we have ¢? = cU k™.

Definition 7.10. An elementary p-group H is a group isomorphic to (Z/p)™ for
some n. The rank of H is n, that is, its dimension as a vector space over Z/p. The
elementary rank of a pro-p group G is the supremum of all natural numbers r such
that G has a subgroup isomorphic to an elementary p-group of rank 7.

Proposition 7.11. Let G be a cohomologically quasi-Boolean pro-2 group. Then
the following holds:

(i) every involution x € G is not in the kernel of any quasi-canonical homo-
morphism,
(ii) the elementary rank of G is at most one.

Proof. To prove (i), let x € G be an involution, let H < G be the subgroup
generated by x and let i: H — G be the inclusion map. Assume that there is a
quasi-canonical homomorphism k € H'(G,Z/2) whose restriction to H is zero, or
equivalently i*(k) = 0. By Corollary there is an n > 0 and a ¢ € H"(G,Z/2)
such that i*(c) € H"(H,Z/2) is non-zero. Then

0#i*(c)> =i*(c*) =i*(cU k™) = i*(c) ui* (k)" =0

using that H*(H,Z/2) is isomorphic to a polynomial ring in one variable over Z/2,
but this is a contradiction. Therefore (z) holds.

To prove (i%), assume to the contrary that G contains a subgroup H isomorphic
to an elementary 2-group of rank 2. Then the kernel of the restriction of a quasi-
canonical homomorphism of H is non-trivial. This contradicts part (i), so claim
(i) is true. O

Definition 7.12. Let p be a prime number and let h: R — S be a homomorphism
of graded anti-commutative algebras over F,. We say that h is an F-isomorphism
if
() for every homogeneous element r in the kernel of h we have r" = 0 for some
n,
(i7) for every homogeneous element s in S the power s?" is in the image of h
for some n.

Lemma 7.13. Let f: B®* — C*® be an F-isomorphism between graded Boolean
algebras. Then f is an isomorphism.

Proof. Since graded Boolean algebras have no nilpotent elements, we get that f is
injective by condition (i) of Definition[7.12] Next we show that f is surjective. Since
f is clearly an isomorphism in degree zero, it will be sufficient to show that for every
positive integer n and x € C™ there is a y € B™ such that f(y) = z. By assumption,
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there is a positive integer m and a z € B™ such that f(z) = 2™. Because B*
is a graded Boolean algebra the m-th power map B"™ — B™ is an isomorphism,
so there is a y € B™ such that y™ = z, and hence f(y)™ = f(y™) = f(z) = ™.
Since C* is also a graded Boolean algebra the m-th power map C™ — C™™ is an
isomorphism, so f(y) = . O

Definition 7.14. For every profinite group G, let 2A(G) denote the set of all sub-
groups of G which are finite elementary abelian p-groups. Note that all such sub-
groups are closed, since G is Hausdorff. Also note that 2A(G) form a category
where morphisms are maps f: A — B such that there is an € G such that
f(y) = 27 1gx for every y € A. Note that the assignment G' — 2A(G) is functorial,
that is for every continuous homomorphism h : G — H there is an induced func-
tor 2A(h): A(G) — A(H). For every open normal subgroup N < G, let A(G, N)
denote the image of A(G) under the functor A(mwy): A(G) — A(G/N) induced by
the quotient map 7n : G — G/N.

Definition 7.15. Let DGAC, denote the category of graded anti-commutative
algebras over Z/p. For every profinite group G, let Fg: 2A(G) - DGAC, be the
functor given by the rule A — H*(A,Z/p). For every open normal subgroup N<G,
let Fg n: A(G,N) - DGAC, denote the restriction of Fig/y onto A(G, N). For
every G and N as above, let H*y(G,Z/p) and H*y (G, N,Z/p) denote the inductive
limit of the functor F¢ and Fg v, respectively.

Definition 7.16. Let G and N be as above. Then for every A € A(G, N), let
ma,n: A— mn(A) be the map induced by the restriction of 7 onto A. Note that
for every

c= {CA € H.(A,Z/p) | Ae Ql(G’N)} Gi.m(G,N,Z/p)

the collection
an(c) = {mN alcry(a)) € H* (A, Z/p) | AeA(G)}

lies in H*y(G,Z/p) and the map ay: H*y(G,N,Z/p) — H*y(G,Z/p) is a ho-
momorphism of graded anti-commutative algebras over Z/p. Let Hj(G,Z/p) de-
note the union of the images of these homomorphisms as N ranges over the set
of all open normal subgroups of G. Since these images form an inductive system,
HY(G,Z/p) is a graded subalgebra of H*y(G,Z/p). Clearly, when G is finite, we
have Hy(G,Z/p) = H*o(G,Z/p).

Proposition 7.17. Let G be a profinite group of elementary rank at most 1 such
that there is an open normal subgroup of G without p-torsion. Then Hy(G,Z/p) =
C(X)3(G),Z/p) for every n > 0.

Proof. Let F(X)(G),Z/p) denote the group of all Z/p-valued functions on X (G).
Since for every non-zero A € A(G), we have A = Z/p. Hence H"(A,Z/p) = Z/p,
every element ¢ € Hy(G,Z/p) gives rise to a function YV3¥(G) — Z/p which is
conjugation-invariant, and hence descends to a function f(c): Xf(G) — Z/p. The
map f: Hy(G,Z/p) — F(X;(G),Z/p) is an isomorphism. So the precise meaning
of our claim is that the image of Hy(G,Z/p) under f and C(X;)(G),Z/p) are equal
as subgroups of F(X,f(G),Z/p).

First let ¢ € Hy(G,Z/p) be arbitrary. Then there is an open normal subgroup
N <G and a d € Hy(G, N,Z/p) such that ¢ = ay(d). Since for every pair M, N
of open, normal subgroups of G such that M < N the image of ap; contains the
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image of ay, we may assume that IV does not contain p-torsion without the loss of
generality by shrinking N if it is necessary. Then 7 induces a map ﬂﬁ: X (G) —
XJ(G/N), and f(c) is the composition of Wﬁ with the function Im(wﬁ) — Z/p
corresponding to d. Since both ﬂﬁ and the latter function are continuous, we get
that f(c) is continuous, too.

Now let ¢ € C(X;f(G),Z/p) be arbitrary, and let g: V¥ (G) — Z/p be the continu-
ous function we get by composing the quotient map YV (G) — X,f(G) with c. Since
the translates of normal open subgroups of G form a sub-basis for its topology, for
every x € Y(G) there is a normal open subgroup N, <1G such that g is constant on
N, n V¥ (G). Since there is an open normal subgroup of G without p-torsion, the
subspace Yy (G) is closed, and hence compact, so there is a finite subset S < V¥ (G)
such that Y (G) € J,eg 2N

Since N = (,cg Nz is the intersection of finitely many normal open subgroups,
it is a normal open subgroup, too. We may even assume that N does not con-
tain p-torsion without the loss of generality by shrinking NN if it is necessary, as
above. Then g is constant on N n V*(G) for every z € Y¥(G), and hence c is the

composition of wﬁ above with a function d: Im(w]#\,) — Z/p. O

Definition 7.18. Let G be as above, and, for every A € A(G), let ig: A — G be
the inclusion map. For every c € H*(G,Z/p), the collection

qc(c) = {i4(c) € H*(A, Z/p) | A € A(G)}

lies in Hy (G, Z/p), since every conjugation of G induces the identity on H*(G,Z/p).
The resulting map qg: H*(G,Z/p) — Hy(G,Z/p) is a homomorphism of graded
anti-commutative algebras over Z/p.

Lemma 7.19. The homomorphism gg maps H*(G,Z/p) into Hy(G,Z/p).

Proof. Let ¢ € H"(G,Z/p) be arbitrary. Then there is an open normal subgroup
N < G and a d e H"(G/N,Z/p) such that ¢ = 7} (d). Let ¢on: Hy(G/N,Z/p) —
H (G, N,Z/p) be the map induced by the inclusion functor (G, N) — A(G/N).
Clearly qg(c) = an(én(gg/n(d))), and hence the claim holds. O

Theorem 7.20 (Quillen—Scheiderer). For every profinite group G, the homomor-
phism
4 H*(G, Z/p) — Hy(G, Z/p)

is an F'-isomorphism.

Proof. This theorem was proved by Quillen when G is finite (see [I3, Theorem 7.1
on page 567] which is actually a more general result). At the end of [T1] (see 8.6 and
8.7 on pages 279-80) Scheiderer pointed out that there is an easy limit argument
to derive the theorem above as a corollary. In fact, he proved that gg satisfies
property (i) in Definition We complete his argument by showing (i7) for the
convenience of the reader.

Definition 7.21. For every pair M, N of open, normal subgroups of G such that
M < N let mpyn: G/M — G/N be the quotient map, and let 2(G, M, N) denote
the image of the functor A(mar,n): A(G/M) — A(G/N).

Lemma 7.22. For every open, normal subgroup N <t G there is open, normal

subgroup M < G such that M € N and A(G,M,N) = 2A(G, N).
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Proof. This is the Claim on page 280 of [I1]. O

Now let ¢ € H}(G,Z/p) be arbitrary, and let N <G be an open normal subgroup
such that there is a
d={dye H*(AZ/p) | Ac U(G,N)} € Hy(G, N, Z/p)

with the property ¢ = ay(d). By Lemma there is an open, normal subgroup
M <1 G such that M < N and (G, M,N) = A(G, N). For every A € A(G/M),
let mar,n,.a: A — mar,n(A) be the map induced by the restriction of mps n onto A.
The fact A(G, M, N) = (G, N) means that the collection

e = {7l naldry (1) € H' (A Z/p) | Ae AG/M)}
is a well-defined element of Hy(G/M,Z/p) = Hy(G/M,Z/p). Applying Quillen’s
theorem to e we get that there is a positive integer m and an f € H"(G/M, Z/p) such
that e?” = qam(f). Let én: Hy(G/M,Z/p) — Hy (G, M,7Z/p) be the map in-
duced by the inclusion functor A(G, M) — A(G/M) as above. Then ap(¢ps(e)) =
an(d), and hence

m

" = ap(dar(e))?" = an(dar(e?")) = anr(dnr(acnr (£))) = ac (i (f)).
This finishes the proof of Theorem [7.20} [

As a consequence we get the following

Corollary 7.23. Let G be a cohomologically quasi-Boolean pro-2 group. Then for
every ¢ > 0, there is a natural homomorphism
s H(G,Z/2) — C(X*(G),Z/2)

which is an isomorphism for i > 1 and surjective for i = 1.
Proof. Let C*(X*(G),Z/2) denote the graded Boolean algebra associated to the
Boolean ring C(X*(G),Z/2). By Proposition the conditions of Proposition
apply to G. Hence, by Theorem there is an F-isomorphism:

7 H*(G,Z/2) —» C*(X*(G),Z/2).
This map is zero on the nilradical of H*(G,Z/2), so it induces an F-isomorphism:
(7.23.1) H*(G,Z/2)/N(H*(G,Z/2)) — C*(X*(GQ),Z/2)

of graded Boolean algebras by Lemma [7.7] which must be an isomorphism by
Lemma Since the nilradical of H*(G,Z/2) consists of degree one elements,
the claim follows. O

8. PROOF OF THE MAIN THEOREM AND SOME CONSEQUENCES

Now we are ready to give the proofs of our main results.

Proof of Theorem[I.g. The implication (i) = (i) is Theorem while the impli-
cation (ii) = (i) is Theorem [6.17] We already saw that (i7) trivially implies (i)
in the proof of Theorem [5.4] Now assume that G is the maximal pro-2 quotient of
a real projective profinite group H. As explained in [8, Section 10|, H*(H,Z/2) is
the connected sum of a dual algebra and a graded Boolean algebra. The pull-back
map H*(H,7Z/2) — H*(G,Z/2) is an isomorphism by the Rost—Voevodsky norm
residue theorem [I4], so we get that G is cohomologically quasi-Boolean. Therefore
the implication (i4i) = (iv) holds. To finish the proof of Theorem (1.6} we show the
remaining implication (iv) = (¢) in the following
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Theorem 8.1. Every cohomologically quasi-Boolean pro-2 group G is real projec-
tive.

Proof. Since G has an open subgroup without 2-torsion by part (i) of Proposition
7.11] it will be sufficient to show that every real embedding problem for G has a
solution. By Proposition [5.2] we need to show that any real 2-embedding problem
for G has a solution. In fact we will prove something stronger.

Definition 8.2. For every group G, let G# denote the set of its conjugacy classes,
for every z € G, let % € G# denote the conjugacy class of =, and, for every
homomorphism h: G — H of groups, let h#*: G# — H? denote the map on
conjugacy classes induced by h. Now let G be a profinite group. An embedding
problem with lifting data (E, f) for G is an embedding problem E:

G

d,). i¢
L

and a continuous map f: X*(G) — X(B) such that a® o f = ¢#|yx(g). A solu-
tion to this embedding problem with lifting data is a solution (Z to the embedding
problem E such that ¢#|xx ) = f.

Proposition 8.3. Let G be a quasi-Boolean pro-2 group G. Then every 2-embedding
problem with lifting data for G has a solution.

Proof. In order to prove the claim in a first significant case, we need to recall some
basic definitions and results.

Definition 8.4. The kernel, denoted Ker(E), of an embedding problem E as one in
Definition [5.1]is the kernel of a. We say that E is central if Ker(E) lies in the centre
of B. In this case the conjugation action of G makes Ker(E) into a constant abelian
G-module. Assume now that the embedding problem E is central. Let $ :G—> B
be a continuous map such that « o¢§ = ¢. Then the map ¢: G x G — Ker(E) given
by the rule:

() = Bey)o(y) ' o(x) " € Ker(B), (v,y€G)
is a cocycle, and its cohomology class o(E) € H?(G,Ker(E)), called the obstruction

class of E, does not depend on the choice of ¢, only on E. Moreover, E has a
solution if and only if o(E) is zero.

Remark 8.5. The obstruction class has the following important naturality property:
Let E be an embedding problem for G as above, and suppose that E is central. Let
x: H — G be a continuous homomorphism of profinite groups. Then

H

l¢ox
.

is a central embedding problem E(y) for H with the same kernel as E, and we have

X*(o(E)) = o(E(x)),
where x*: H*(G,Ker(E)) — H*(H,Ker(E)) is the pull-back map.
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Lemma 8.6. Let G be a quasi-Boolean pro-2 group G. Then every 2-embedding
problem with lifting data for G and with a kernel isomorphic to Z/2 has a solution.

Proof. Let (E, f) be an embedding problem with lifting data for G as in Definition
and assume that its kernel is isomorphic to Z/2. Since the automorphism
group of the latter is trivial, we get that E is central. Because E is equipped with
lifting data, it is real, that is, for every subgroup H < G of order 2 the embedding
problem E(iy) has a solution, where ify: H — G is the inclusion map. Therefore,
by Remark the image of o(E) under the homomorphism:

Ty H*(G,Z/2) — C(X*(G),Z/2)

is zero. So by Corollary the obstruction class o(E) vanishes, and hence E has
a solution.

Let s: G — B be such a solution. Let r: X*(G) — Z/2 = Ker(a) be the map
given by the rule:

() = 0 ,if s#(m) = f(=),
1 , otherwise.

Since s# x f: X*(G) — B# x B¥ is continuous with finite image, and 7(z) only
depends on s#(z) and f(z) for every x € X*(G), we get that r is continuous.
Therefore, by Corollary there is a continuous homomorphism x: G — Z/2 =
Ker(«) whose image of under the homomorphism:

71 HY(G,Z/2) — C(X*(G),Z/2)

is 7. Let ¢: G — B be the function given by the rule (Z(g) = s(g)x(g). Since it is
the product of two continuous functions, ¢ is continuous. Moreover,

¢(gh) = s(gh)x(gh) = s(g)s(h)x(9)x(h) = s(g)x(g)s(h)x(h) = d(g)¢(h)

using that s, x are homomorphisms and Ker(«) is central. Therefore q; is a ho-
momorphism. Since « 05 = aos = ¢, we get that 5 is a solution to E. Now
let y € Y*(G) be arbitrary. If s#(y#) = f(y*), then a(y) = s(y), and hence
o) = s()* = s*(y?) = f(y). T s (y#) # f(y#), then §(y) # s(y), s0 B(y)
is the unique element of a~!(¢(y)) different from s(y). Since a~1(¢(y)) contains an
element of f(y#), as a is surjective, and this element is not s(y), it must be ¢(y).
So 5(1/)# = f(y*) in this case, too. a

Now we are going to show Proposition in the general case. Let (E, f) be
an embedding problem with lifting data for G' as in Definition Since B is a
2-group, it has a filtration by normal subgroups:

{1} =Ngc Ny < --- < N,, = Ker(a)

such that the kernel of the quotient map 7y : B/Ny — B/Nj1 is isomorphic to Z/2
for every k = 0,1,...,n—1. Let gy : B — B/Nj, be the quotient map. Note that it
will be sufficient to show that for every continuous homomorphism h : G — B/Ng41
such that h#\x*(g) = q,il of = 7r;f o qf o f the embedding problem Ej:

G

B/Nj, ?B/Nkﬂ

batd
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with lifting data q,f o f has a solution for every £k = 0,1,...,n. Indeed let
ry: B/Ny — A = B/N, be the quotient map; then we would get by descending
induction on the index k that the embedding problem:

G

o ¢
ya

with lifting data q;f o f has a solution. The claim is now clear from the case k = 0.

However Ej, has a kernel isomorphic to Z/2, so (Ey, q,f o f) has a solution by Lemma
3.6l 0

In order to conclude the proof of Theorem [8:1] it will be sufficient to show that
every real 2-embedding problem E for G as above can be equipped with lifting
data. By assumption, for every x € X(A) in the image Im(¢#\x*(g))7 there is a
y € X(B) such that a¥(y) = z, i.c., there is a section g: Im(¢#|xx(g)) — X (B) of
the restriction a#\ x(B)- Since g is a map between discrete spaces, it is continuous,
therefore the composition f = go ¢#|X*(G) is also continuous, and hence (E, f) is
a 2-embedding problem with lifting data. O

Proof of Corollary[1.7] First assume that G is Boolean, i.e., G is isomorphic to
B(X) for some profinite space X. Then it is cohomologically quasi-Boolean by
Theorem so H*(G,Z/2) is the connected sum of a dual algebra D* and a
graded Boolean algebra B®. Assume that D® is non-trivial, so there there is a
non-zero ¢ € D! « Hom(G,Z/2). Then c U ¢ = 0 as D? = 0, so the restriction of ¢
onto every involution in the image of ix: X — Y(B(X)) is zero. Therefore, by the
universal property of B(X) of Remark the homomorphism corresponding to ¢
is also zero, a contradiction, and hence G is cohomologically Boolean.

Next assume that G is cohomologically Boolean. Then it is quasi-Boolean by
Theorem [L.6] so G is the free product of a free pro-2 group F and a Boolean group
B(X) for a profinite space X. Assume that F' is non-trivial; then there is a non-zero
c € Hom(F,Z/2). Let 71 : G — F be the surjective homomorphism supplied by the
universal property of free pro-2 products, and let ¢ be the composition of 7y and c.
Then cuc = 0, and hence cuc = 0. Since H*(G,Z/2) is a graded Boolean algebra,
this implies that ¢ is zero, a contradiction. Therefore GG is Boolean. (]

Remark 8.7. Let G be a Boolean group and let f: G — Z/2 be a quasi-canonical
homomorphism. By Remark [7.9] the homomorphism f is characterised by the
property that, for every n > 0 and ¢ € H"(G,Z/2), we have ¢*> = ¢ U k™. But
H*(G,Z/2) is a graded Boolean algebra by Corollary and hence f is unique.
Therefore, it is justified to call it the canonical homomorphism of the Boolean group

G.

Proof of Theorem[1.8. By assumption, G is isomorphic to F(Y”) o B(X') for a set
Y’ and a profinite space X’. We are actually going to show something stronger,
namely, that the profinite spaces X and X’ are homeomorphic, and the sets Y’
and Y are bijective. By Theorem the profinite spaces X’ and X*(G) are
homeomorphic, and, as we saw in the proof of Corollary the graded Boolean
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algebras B* and C*(X*(G),Z/2) are isomorphic (see (7.23.1)). Therefore, by
Stone duality Theorem the profinite spaces X and X’ are homeomorphic,
too. Using Notation we have Gy = F(Y'), @ B(X')x. Hence we have
HY(G,Z/2) = H'(F(Y),Z/2) ® H'(B(X'),Z/2). But H'(G,Z/2) = D' ® B,
as since H'(B(X’),Z/2) =~ B! by the above, we get that H'(F(Y"'),Z/2) =~ D'.
Therefore, Z/2®Y" ~ 7,/29Y and hence there is a bijection between Y’ and V. [
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