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The demands of science and industry for methods for understanding and utilizing
large and complex data sets have been growing very rapidly, driven in part by our
ability to collect ever more data about many different subjects. A key requirement is
to construct useful models of data sets that allow us to see more clearly and rapidly
what the data tells us. Mathematical modeling is usually thought of as the discipline
of constructing algebraic or analytic models, where the output of the model is an
equation, a system of equations, or perhaps a system of differential equations. This
method has been very effective in the past, when many of the data sets to be studied
involved only a small number of features and where there are simple relations among
the variables that govern the data being modeled. The work of Galileo, Kepler, and
Newton are prime examples of the successes of this kind of modeling. However,
these methods run into difficulties when confronted with some of the very complex
data currently arising in applications. For example, consider data sets where the
goal is to identify potential instances of fraud, or to discover drugs, where the
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complex structure of molecules means that identification of effective medications
is a very complex task. For this reason, it is incumbent on the mathematical and
statistical communities to develop new methods of modeling. To understand what
these methods might be, we ask ourselves what do mathematical models buy us?
Here are some answers to that question.

• A mathematical model should provide some kind of compression of the data
into a tractable form. When we model data by using a simple one variable linear
regression, the result compresses the data from thousand or hundreds of thousands
of data points into two numbers, the slope and the y-intercept. If the approximation
is good, we have achieved a massive compression.

• Amathematical model should provide understanding of the data. The usual math-
ematical modeling of the flight of a cannonball gives a great deal of understanding
about its behavior.

• In many cases, we would like a model to allow us to predict outcomes. In the
cannonball problem, we need only know the muzzle velocity and the angle of
the cannon barrel in order to predict where the cannonball will land, or what the
highest altitude it will reach is.

Nothing about these answers requires that the model be algebraic. Consider, for
example, cluster analysis. Its output is no longer an equation or a set of equations,
but rather a partition of the data set into a collection of groups. Such a partition
provides all three of the capabilities described above. Cluster analysis clearly pro-
vides compression, since the number of clusters is typically a much smaller number
than the number of data points. It also provides understanding, since the cluster
decomposition is effectively a taxonomy of the data points. Finally, it can also be
used to provide predictions, via classifying new data points into the different clusters
using methods like logistic regression or decision trees. These observations suggest
that we view cluster analysis as a modeling mechanism which is discrete in the sense
that it produces zero-dimensional outputs, with no information about continuous
phenomena such as progressions. They also suggest that we look for other modeling
mechanisms where the output can consist of more complex mathematical structures.
Topological data analysis (TDA) is a modeling method in which the outputs are
graphs and simplicial complexes. Work on TDA began with the study of persistent
homology (see [16, 26, 32]), but over time the direct study of low-dimensional sim-
plicial complex models (see [4, 30]) has also become important in applications. Here
are some of the advantages of TDA.

• TDA is able to give insight into continuous and discrete properties of a data set in
one output. Cluster analysis provides a discrete analysis, and algebraic modeling
often reflects continuous information.
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• It is able to represent the properties of complex data more flexibly and therefore
more accurately than other machine learning methods.

• There is a great deal of “functionality" in the representation of data sets, since
simplicial complexes and graphs are more complex mathematical structures than
partitions or simple regression models. For example, if one is studying a function
on a data set, one is often able to create a corresponding function on the nodes
of the model, and the behavior of the corresponding function often clarifies the
behavior of the function. Persistent homology can also be viewed as functionality,
since it provides away tomeasure (in an appropriate sense) the shape of themodel.

• An interesting direction is the study of topological models of the set of features in
a data set rather than the set of data points. This point of view has been advocated
in [27] and [11], and referred to in [27] as “topological signal processing".

• Although persistent homology can be used to study the overall structure of data
sets, it is also used to generate features of data sets of complex or unstructured
objects. For example, in [31], data bases of molecules are treated as data sets
whose points are finite metric spaces.

TDA has been applied in a number of interesting domains, notably neuroscience
[18, 20, 25, 29, 28], materials science [19, 22], cancer biology [21, 23], and immune
responses [24].

There are numerous very active mathematical research directions within TDA.

• Vectorization of barcodes: Most machine learning methods are defined for data
which is in the form of vectors in a high dimensional vector space. There are
numerous situations where the data points themselves are more complex objects,
which support a metric. For example, molecule structures or images fall into this
category. In such situations, one has assignments of barcodes to individual data
points instead of the whole data set. In order to enable machine learning, one must
therefore create functions on the set of barcodes. There are a number of strategies
to provide such “vectorizations". See [1, 2, 8] for examples.

• Probabilistic analysis of spaces of barcodes: Statistical and probabilistic anal-
yses clearly play a key role in any data analytic problem. If we are building
simplicial complex models or creating features based on persistent homology, it
is clear that it is important to understand the behavior of distributions on the set
(it can be made into a metric space in numerous ways) of persistence barcodes or
equivalently persistence diagrams. There is a great deal of work in this direction.
See [3, 5, 6, 7, 15] for interesting examples.

• Methods for assessing the faithfulness of topological models: If we build
topological models of data, it is critical to devise methods for assessing how
faithful to the data the model is. Of course, even the problem of defining measures
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of this kind of consistency is an important one. The paper [12] is an example of
this kind of work.

• Multidimensional and generalized persistence: Since the development of per-
sistent homology, a number of generalizations of it have been developed. In
particular, the idea that one might have families of complexes depending on more
than one real parameter is referred to as multidimensional persistence [9]. Addi-
tionally, zig-zag persistence [10] studies the behavior of parametrized families of
complexes where one is permitted to delete as well as add simplices. Further gen-
eralizations have been made, and a key direction of research is to attach invariants
to generalized persistence objects so that one can interpret them and make use of
them in data analysis. Other interesting work in this direction is given in [13, 17].

• New domains of application: TDA has already seen application in numerous
areas, which were mentioned above. Finding new ways to apply it is high priority
research.

This volume presents a number of interesting papers in numerous different research
directions. It provides a partial snapshot of the current state of the field, and we hope
that it will be useful to practitioners as well as those considering entering the field.

The papers are written by participants (and their collaborators) of the Abel Sym-
posium 2018 which took place from June 4 to June 8, 2018 in Geiranger, Nor-
way. The symposium was organized by an external committee consisting of Gun-
nar E. Carlsson (Stanford University), Herbert Edelsbrunner (IST Austria), Kathryn
Hess (EPF Lausanne), and Raul Rabadan (Columbia University) and a local com-
mittee from NTNU Trondheim consisting of Nils A. Baas, Gereon Quick, Markus
Szymik and Marius Thaule. The webpage of the symposium can be found at
https://folk.ntnu.no/mariusth/Abel/.

We gratefully acknowledge the generous support of the Board for the Niels Henrik
Abel Memorial Fund, the Norwegian Mathematical Society, the Department of
Mathematical Sciences and the Faculty of Information Technology and Electrical
Engineering at NTNU. We also thank Ruth Allewelt, Leonie Kunz and Springer-
Verlag for encouragement and support during the editing of these proceedings.
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